Marzec B, Zhang L, Zhu N, Schmitt W. Bio-inspired synthetic approaches: from hierarchical, hybrid supramolecular assemblies to CaCO
3-based microspheres.
Dalton Trans 2017;
46:6456-6463. [PMID:
28470257 DOI:
10.1039/c7dt00914c]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bio-inspired synthetic approach to unprecedented hybrid supramolecular assemblies [Ca(Me2hda)(H2O)3]·H2O (1) and [Ca(C12hda)(H2O)2]·H2O (2), that are stabilized by iminodiacetate-substituted organic ligands is reported. The results of the single-crystal X-ray analysis of 1 further allowed the use of electron microscopy to verify the supramolecular structure of the fibrous assemblies of 2 that incorporate extended alkyl-substituted ligand derivatives. 2 reveals interesting features that distinguish these soft structures from purely inorganic, brittle materials: meshes of nanobelts transform on solid supports to form homogeneous films covering extended, micro-sized areas. The use of the reported ligand system as a habit modifier for CaCO3 results in hierarchical calcite aggregates. The structure-influencing effects of the ligands and their supramolecular assemblies promote the formation of calcite disks that tessellate into hollow microspheres that contain distinctive openings.
Collapse