1
|
Takata R, Nakabayashi Y, Hashimoto K, Miyazato A, Osaka I. Imaging Analysis of Phosphatidylcholines and Diacylglycerols Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Metal Film Formed by Mist Chemical Vapor Deposition. Mass Spectrom (Tokyo) 2023; 12:A0135. [PMID: 38034981 PMCID: PMC10686700 DOI: 10.5702/massspectrometry.a0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) has been widely used for analyses of biomolecules and industrial materials. Surface-assisted laser desorption/ionization (SALDI) is studied to complement the ionization ability for the MALDI/MS. In this study, lab-made mist chemical vapor deposition (mist CVD) system was used to produce metal films as ionization assistance materials for SALDI/MS. The system could give Ag film from inexpensive silver trifluoroacetate solution rapidly and simply under atmospheric pressure. Phosphatidylcholines could be detected high sensitively and diacylglycerols (DAGs) could not be detected in MALDI/MS. In the SALDI/MS and the MS imaging with Ag film by mist CVD, both the phosphatidylcholines and the DAGs could be detected and the localized images. In the Ag film-SALDI/MS of lipids, not only Ag-adducted ions but also Na- and K-adducted ions were detected. The Ag film formed by the mist CVD to act as an ionization-assistance material and a cationization agent in SALDI would be useful in MS imaging of biological tissue sections.
Collapse
Affiliation(s)
- Riko Takata
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939–0398, Japan
| | - Yuji Nakabayashi
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923–1211, Japan
| | - Kotaro Hashimoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939–0398, Japan
| | - Akio Miyazato
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923–1211, Japan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939–0398, Japan
| |
Collapse
|
2
|
Kannen H, Miyoshi Y, Hazama H, Awazu K. Improvement in Ionization Efficiency Using Metal Oxide Nanoparticles in Laser Desorption/Ionization Mass Spectrometry of a Cancer Drug. Mass Spectrom (Tokyo) 2022; 10:A0099. [PMID: 34993048 PMCID: PMC8697360 DOI: 10.5702/massspectrometry.a0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Mass spectrometry imaging (MSI) without labeling has the potential for faster screening in drug development. Matrix-assisted laser desorption/ionization (MALDI) is typically used, but it has a large matrix size and uneven drug distribution. Surface-assisted laser desorption/ionization (SALDI) using nanoparticles (NPs) may overcome these issues. Here, the influence of NPs, solvent ratio, and order of dropping of NPs on SALDI-MSI of protoporphyrin IX (PpIX), a cancer drug, are reported. A solution of PpIX in a 50% aqueous solution of 50% acetonitrile at a concentration of 10 μM was used. The NPs include ZnO, Fe3O4, and four types of TiO2. The NPs were fabricated by dissolving them on an aqueous 90% acetonitrile solution. Mass spectra were obtained with a time-of-flight mass spectrometer using a Nd:YAG laser at a 355-nm wavelength. The signal intensity using TiO2 at a 0.5 mg/mL concentration in 50% acetonitrile was increased by 1.6-fold compared to that without TiO2. Changing the solvent to 90% acetonitrile gave a uniform TiO2 distribution and a 9-fold increase in the signal intensity for PpIX. Among the four types of TiO2 with different particle sizes and crystal structures, TiO2 with a smaller particle size and a rutile crystal structure produced the highest signal intensity. Forming a layer on top of the PpIX also resulted in an increased signal intensity. Hence, SALDI using TiO2 provides effective ionization of the drug. In the future, we plan to investigate a spray method for the ionization of PpIX using TiO2 for the MSI of various drugs.
Collapse
Affiliation(s)
- Hiroki Kannen
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuto Miyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisanao Hazama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Kakuta T, Manyuan N, Kawasaki H. UV-Absorbing Ligand Capped Gold Nanoparticles for the SALDI-MS Analysis of Small Molecules. Mass Spectrom (Tokyo) 2022; 11:A0107. [PMID: 36713807 PMCID: PMC9853113 DOI: 10.5702/massspectrometry.a0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
We report that modifying the surface of gold nanoparticles (Au NPs) with 2-mercaptopyridine-3-carboxylic acid (MPyCA) enhances surface-assisted laser desorption/ionization (SALDI) performance in the analysis of small molecules. The MPyCA ligand has a strong UV absorbance at the wavelengths of the typical MALDI laser at 337 nm, resulting in efficient thermal/energy transfer from the Au NPs to analytes during pulse-laser irradiation. In addition, the MPyCA ligand contains carboxylic acid and pyridine groups, providing affinity to various analytes through acid-base interactions. Irganox1010, glucose and meropenem were utilized as model analytes to evaluate SALDI performance because these molecules are generally ionized with difficulty by conventional MALDI-MS. Our results demonstrate that the MPyCA-Au NP based SALDI-MS could detect Irganox1010, glucose and meropenem with stronger ion peaks for these molecules compared to MALDI-MS using CHCA. The limit of detection (LOD) for meropenem was much lower in the case of SALDI (LOD=1 ng/mL) compared to MALDI (LOD=10 μg/mL).
Collapse
Affiliation(s)
- Tomomi Kakuta
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Nichayanan Manyuan
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan,Correspondence to: Hideya Kawasaki, Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3–3–35 Yamate-cho, Suita, Osaka 564–8680, Japan, e-mail:
| |
Collapse
|
4
|
Chen C, Laviolette SR, Whitehead SN, Renaud JB, Yeung KKC. Imaging of Neurotransmitters and Small Molecules in Brain Tissues Using Laser Desorption/Ionization Mass Spectrometry Assisted with Zinc Oxide Nanoparticles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1065-1079. [PMID: 33783203 DOI: 10.1021/jasms.1c00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic nanostructured materials such as silicon, carbon, metals, and metal oxides have been explored as matrices of low-background signals to assist the laser desorption/ionization (LDI) mass spectrometric (MS) analysis of small molecules, but their applications for imaging of small molecules in biological tissues remain limited in the literature. Titanium dioxide is one of the known nanoparticles (NP) that can effectively assist LDI MS imaging of low molecular weight molecules (LMWM). TiO2 NP is commercially available as dispersions, which can be applied using a chemical solution sprayer. However, aggregation of NP can occur in the dispersions, and the aggregated NP can slowly clog the sprayer nozzle. In this work, the use of zinc oxide (ZnO) NP for LDI MS imaging is investigated as a superior alternative due to its dissolution in acidic pH. ZnO NP was found to deliver similar or better results in the imaging of LMWM in comparison to TiO2 NP. The regular acid washes were effective in minimizing clogging and maintaining high reproducibility. High-quality images of mouse sagittal and rat coronal tissue sections were obtained. Ions were detected predominately as Na+ or K+ adducts in the positive ion mode. The number of LMWM detected with ZnO NP was similar to that obtained with TiO2 NP, and only a small degree of specificity was observed.
Collapse
Affiliation(s)
| | | | | | - Justin B Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON N5 V 4T3, Canada
| | | |
Collapse
|
5
|
ZHAO YZ, XU Y, GONG C, JU YR, LIU ZX, XU X. Analysis of Small Molecule Compounds by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe3O4 Nanoparticles as Matrix. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60074-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
7
|
Effect of molar ratio of oxidizer/3-hexylthiophene monomer in chemical oxidative polymerization of poly(3-hexylthiophene). J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
NIE LH, WANG WG. Investigation on Production of Cluster Ions Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|