1
|
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023; 127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fragmentation and embedding schemes are of great importance when applying quantum-chemical calculations to more complex and attractive targets. The divide-and-conquer (DC)-based quantum-chemical model is a fragmentation scheme that can be connected to embedding schemes. This feature article explains several DC-based schemes developed by the authors over the last two decades, which was inspired by the pioneering study of DC self-consistent field (SCF) method by Yang and Lee (J. Chem. Phys. 1995, 103, 5674-5678). First, the theoretical aspects of the DC-based SCF, electron correlation, excited-state, and nuclear orbital methods are described, followed by the two-component relativistic theory, quantum-mechanical molecular dynamics simulation, and the introduction of three programs, including DC-based schemes. Illustrative applications confirmed the accuracy and feasibility of the DC-based schemes.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - Junji Seino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
2
|
Yoshikawa T, Takanashi T, Nakai H. Quantum Algorithm of the Divide-and-Conquer Unitary Coupled Cluster Method with a Variational Quantum Eigensolver. J Chem Theory Comput 2022; 18:5360-5373. [PMID: 35926142 DOI: 10.1021/acs.jctc.2c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The variational quantum eigensolver (VQE) with shallow or constant-depth quantum circuits is one of the most pursued approaches in the noisy intermediate-scale quantum (NISQ) devices with incoherent errors. In this study, the divide-and-conquer (DC) linear scaling technique, which divides the entire system into several fragments, is applied to the VQE algorithm based on the unitary coupled cluster (UCC) method, denoted as DC-qUCC/VQE, to reduce the number of required qubits. The unitarity of the UCC ansatz that enables the evaluation of the total energy as well as various molecular properties as expectation values can be easily implemented on quantum devices because the quantum gates are unitary operators themselves. Based on this feature, the present DC-qUCC/VQE algorithm is designed to conserve the total number of electrons in the entire system using the density matrix evaluated on a quantum computer. Numerical assessments clarified that the energy errors of the DC-qUCC/VQE calculations decrease by using the constraint of the total number of electrons. Furthermore, the DC-qUCC/VQE algorithm could reduce the number of quantum gates and shows the possibility of decreasing incoherent errors.
Collapse
Affiliation(s)
- Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoya Takanashi
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
3
|
Watanabe HC, Yamada M, Suzuki Y. Proton transfer in bulk water using the full adaptive QM/MM method: integration of solute- and solvent-adaptive approaches. Phys Chem Chem Phys 2021; 23:8344-8360. [PMID: 33875999 DOI: 10.1039/d1cp00116g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quantum mechanical/molecular mechanical (QM/MM) method is a hybrid molecular simulation technique that increases the accessibility of local electronic structures of large systems. The technique combines the benefit of accuracy found in the QM method and that of cost efficiency found in the MM method. However, it is difficult to directly apply the QM/MM method to the dynamics of solution systems, particularly for proton transfer. As explained in the Grotthuss mechanism, proton transfer is a structural interconversion between hydronium ions and solvent water molecules. Hence, when the QM/MM method is applied, an adaptive treatment, namely on-the-fly revisions on molecular definitions, is required for both the solute and solvent. Although several solvent-adaptive methods have been proposed, a full adaptive framework, which is an approach that also considers adaptation for solutes, remains untapped. In this paper, we propose a new numerical expression for the coordinates of the excess proton and its control algorithm. Furthermore, we confirm that this method can stably and accurately simulate proton transfer dynamics in bulk water.
Collapse
Affiliation(s)
- Hiroshi C Watanabe
- Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | | | | |
Collapse
|
4
|
Noroozi J, Smith WR. Accurately Predicting CO2 Reactive Absorption Properties in Aqueous Alkanolamine Solutions by Molecular Simulation Requiring No Solvent Experimental Data. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Javad Noroozi
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - William R. Smith
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
5
|
Ono J, Imai M, Nishimura Y, Nakai H. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. J Phys Chem B 2020; 124:8524-8539. [DOI: 10.1021/acs.jpcb.0c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Minori Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Uratani H, Nakai H. Non-adiabatic molecular dynamics with divide-and-conquer type large-scale excited-state calculations. J Chem Phys 2020; 152:224109. [DOI: 10.1063/5.0006831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Hiroki Uratani
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering (WISE), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8245, Japan
| |
Collapse
|
7
|
Nishimura Y, Nakai H. Hierarchical parallelization of divide‐and‐conquer density functional tight‐binding molecular dynamics and metadynamics simulations. J Comput Chem 2020; 41:1759-1772. [DOI: 10.1002/jcc.26217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering Waseda University Tokyo Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering Waseda University Tokyo Japan
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering, Waseda University Tokyo Japan
- Elements Strategy Initiative for Catalysts and Batteries Kyoto University Kyoto Japan
| |
Collapse
|
8
|
Inamori M, Yoshikawa T, Ikabata Y, Nishimura Y, Nakai H. Spin‐flip approach within time‐dependent density functional tight‐binding method: Theory and applications. J Comput Chem 2020; 41:1538-1548. [DOI: 10.1002/jcc.26197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Mayu Inamori
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto Japan
| |
Collapse
|
9
|
Komoto N, Yoshikawa T, Nishimura Y, Nakai H. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. J Chem Theory Comput 2020; 16:2369-2378. [DOI: 10.1021/acs.jctc.9b01268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Komoto
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
10
|
Sakti AW, Nishimura Y, Nakai H. Recent advances in quantum‐mechanical molecular dynamics simulations of proton transfer mechanism in various water‐based environments. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aditya W. Sakti
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
| | - Hiromi Nakai
- Element Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Japan
- Waseda Research Institute for Science and Engineering (WISE) Waseda University Tokyo Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University Tokyo Japan
| |
Collapse
|
11
|
Chou CP, Sakti AW, Nishimura Y, Nakai H. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery. CHEM REC 2019; 19:746-757. [PMID: 30462370 DOI: 10.1002/tcr.201800141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/24/2023]
Abstract
The density-functional tight-binding (DFTB) method is one of the useful quantum chemical methods, which provides a good balance between accuracy and computational efficiency. In this account, we reviewed the basis of the DFTB method, the linear-scaling divide-and-conquer (DC) technique, as well as the parameterization process. We also provide some refinement, modifications, and extension of the existing parameters that can be applicable for lithium-ion battery systems. The diffusion constants of common electrolyte molecules and LiTFSA salt in solution have been estimated using DC-DFTB molecular dynamics simulation with our new parameters. The resulting diffusion constants have good agreement to the experimental diffusion constants.
Collapse
Affiliation(s)
- Chien-Pin Chou
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555, Japan
| | - Aditya Wibawa Sakti
- Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo, 169-8555, Japan.,Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto, 615-8520, Japan.,Department of Chemistry and Biochemistry, School of Advanced Science and Enigineering, Waseda University, Tokyo, 169-8555, Japan
| |
Collapse
|
12
|
Komoto N, Yoshikawa T, Ono J, Nishimura Y, Nakai H. Development of Large-Scale Excited-State Calculations Based on the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method. J Chem Theory Comput 2019; 15:1719-1727. [PMID: 30673283 DOI: 10.1021/acs.jctc.8b01214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, the divide-and-conquer (DC) method was extended to time-dependent density functional tight-binding (TDDFTB) theory to enable excited-state calculations of large systems and is denoted by DC-TDDFTB. The efficient diagonalization algorithms of TDDFTB and DC-TDDFTB methods were implemented into our in-house program. Test calculations of polyethylene aldehyde and p-coumaric acid, a pigment in photoactive yellow protein, in water demonstrate the high accuracy and efficiency of the developed DC-TDDFTB method. Furthermore, the (TD)DFTB metadynamics simulations of acridinium in the ground and excited states give reasonable p Ka values compared with the corresponding experimental values.
Collapse
Affiliation(s)
- Nana Komoto
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Takeshi Yoshikawa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Junichi Ono
- Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan.,Waseda Research Institute for Science and Engineering , Waseda University , 3-4-1 Okubo , Shinjuku-ku, Tokyo 169-8555 , Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| |
Collapse
|
13
|
Nishimura Y, Nakai H. D
cdftbmd
: Divide‐and‐Conquer Density Functional Tight‐Binding Program for Huge‐System Quantum Mechanical Molecular Dynamics Simulations. J Comput Chem 2019; 40:1538-1549. [DOI: 10.1002/jcc.25804] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
- Department of Chemistry and BiochemistrySchool of Advanced Science and Engineering, Waseda University 3‐4‐1 Okubo, Shinjuku‐ku, Tokyo 169‐8555 Japan
- ESICB, Kyoto University Kyotodaigaku‐Katsura, Kyoto 615‐8520 Japan
| |
Collapse
|
14
|
Santos KMC, Santos RJO, De Araújo Alves MM, De Conto JF, Borges GR, Dariva C, Egues SM, Santana CC, Franceschi E. Effect of high pressure CO2 sorption on the stability of metalorganic framework MOF-177 at different temperatures. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Ariga K, Jackman JA, Cho NJ, Hsu SH, Shrestha LK, Mori T, Takeya J. Nanoarchitectonic-Based Material Platforms for Environmental and Bioprocessing Applications. CHEM REC 2018; 19:1891-1912. [PMID: 30230688 DOI: 10.1002/tcr.201800103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The challenges of pollution, environmental science, and energy consumption have become global issues of broad societal importance. In order to address these challenges, novel functional systems and advanced materials are needed to achieve high efficiency, low emission, and environmentally friendly performance. A promising approach involves nanostructure-level controls of functional material design through a novel concept, nanoarchitectonics. In this account article, we summarize nanoarchitectonic approaches to create nanoscale platform structures that are potentially useful for environmentally green and bioprocessing applications. The introduced platforms are roughly classified into (i) membrane platforms and (ii) nanostructured platforms. The examples are discussed together with the relevant chemical processes, environmental sensing, bio-related interaction analyses, materials for environmental remediation, non-precious metal catalysts, and facile separation for biomedical uses.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,Department of Medicine, Stanford University Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun Takeya
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
16
|
Catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration. Sci Rep 2018; 8:11786. [PMID: 30082729 PMCID: PMC6079042 DOI: 10.1038/s41598-018-29605-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022] Open
Abstract
This work shows the potential of nickel (Ni) nanoparticles (NPs) stabilized by polymers for accelerating carbon dioxide (CO2) dissolution into saline aquifers. The catalytic characteristics of Ni NPs were investigated by monitoring changes in diameter of CO2 microbubbles. An increase in ionic strength considerably reduces an electrostatic repulsive force in pristine Ni NPs, thereby decreasing their catalytic potential. This study shows how cationic dextran (DEX), nonionic poly(vinyl pyrrolidone) (PVP), and anionic carboxy methylcellulose (CMC) polymers, the dispersive behaviors of Ni NPs can be used to overcome the negative impact of salinity on CO2 dissolution. The cationic polymer, DEX was less adsorbed onto NPs surfaces, thereby limiting the Ni NPs’ catalytic activity. This behavior is due to a competition for Ni NPs’ surface sites between the cation and DEX under high salinity. On the other hand, the non/anionic polymers, PVP and CMC could be relatively easily adsorbed onto anchoring sites of Ni NPs by the monovalent cation, Na+. Considerable dispersion of Ni NPs by an optimal concentration of the anionic polymers improved their catalytic capabilities even under unfavorable conditions for CO2 dissolution. This study has implications for enhancing geologic sequestration into deep saline aquifers for the purposes of mitigating atmospheric CO2 levels.
Collapse
|
17
|
Li-modified nanoporous carbons for high-performance adsorption and separation of CO2 over N2: A combined DFT and GCMC computational study. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Huran AW, Steigemann C, Frauenheim T, Aradi B, Marques MAL. Efficient Automatized Density-Functional Tight-Binding Parametrizations: Application to Group IV Elements. J Chem Theory Comput 2018; 14:2947-2954. [DOI: 10.1021/acs.jctc.7b01269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad W. Huran
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Conrad Steigemann
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | | | - Bálint Aradi
- BCCMS, University of Bremen, 28359 Bremen, Germany
| | - Miguel A. L. Marques
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
19
|
KOMOTO N, YOSHIKAWA T, ONO J, NAKAI H. Development of the Divide-and-Conquer Time-Dependent Density Functional Tight-Binding Method for Photoreceptor Protein. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2018. [DOI: 10.2477/jccj.2018-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nana KOMOTO
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University,3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JAPAN
| | - Takeshi YOSHIKAWA
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University,3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JAPAN
| | - Junichi ONO
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JAPAN
| | - Hiromi NAKAI
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University,3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JAPAN
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JAPAN
- ESICB Kyoto University, Kyotodaigaku-Katsura, Nishigyo-ku, Kyoto, Kyoto 615-8520, JAPAN
| |
Collapse
|
20
|
Affiliation(s)
- Yoshifumi NISHIMURA
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo169-8555, JAPAN
| | - Takeshi YOSHIKAWA
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JAPAN
| | - Hiromi NAKAI
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo169-8555, JAPAN
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JAPAN
- ESICB Kyoto University, Kyotodaigaku-Katsura, Nishigyo-ku, Kyoto, Kyoto 615-8520, JAPAN
| |
Collapse
|
21
|
Sakti AW, Nishimura Y, Chou CP, Nakai H. Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice Ih, Ice Ic, Ice III, and Melted Ice VI Phases. J Phys Chem A 2017; 122:33-40. [DOI: 10.1021/acs.jpca.7b10664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | | | | | - Hiromi Nakai
- CREST, Japan Science and Technology Agency, Tokyo 102-0075, Japan
- ESICB, Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|