1
|
Mondal P, Mandal N, Pal AK, Datta A. Computational Insights into Palladium-Catalyzed Site-Selective Anilide and Benzamide-Type [3+2] Annulation via Double C-H Bond Activation. J Org Chem 2024; 89:11371-11379. [PMID: 39072638 DOI: 10.1021/acs.joc.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mechanism of palladium-catalyzed annulation reactions of benzamide- and anilide-type aromatic systems with maleimides is investigated using density functional theory. Double C-H bond activation is key to forming the desired annulation product. The first C-H bond activation for anilide- and amide-type ligands can occur at the ortho and benzylic C-H bonds, while the second C-H activation occurs at the meta carbon of the aromatic rings. For the anilide-type system, ortho and benzylic C-H bond activations occur via four- and five-membered palladacycles, respectively. In contrast, for the benzamide-type system, ortho and benzylic C-H bond activations occur via five- and six-membered palladacycles, respectively. The energy span model suggests that the initial C-H bond activation step at the benzylic position determines the turnover frequency for both anilide- and benzamide-type systems. Energy decomposition analysis and distortion-interaction/activation-strain analyses are employed to understand the electronic and steric factors controlling the turnover frequency-determining transition state.
Collapse
Affiliation(s)
- Partha Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Nilangshu Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| |
Collapse
|
2
|
Khake SM, Chatani N. Rhodium(III)-Catalyzed Oxidative C–H Alkylation of Aniline Derivatives with Allylic Alcohols To Produce β-Aryl Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shrikant M. Khake
- Department of Applied Chemistry, Faculty of Engineering, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
He Q, Yamazaki K, Ano Y, Chatani N. Palladium-Catalyzed Site-Selective [5 + 1] Annulation of Aromatic Amides with Alkenes: Acceleration of β-Hydride Elimination by Maleic Anhydride from Palladacycle. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qiyuan He
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Taborosi A, He O, Ano Y, Chatani N, Mori S. Reaction Path Determination of Rhodium(I)-Catalyzed C-H Alkylation of N-8-Aminoquinolinyl Aromatic Amides with Maleimides. J Org Chem 2021; 87:737-743. [PMID: 34962397 DOI: 10.1021/acs.joc.1c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rhodium(I)-catalyzed reaction of N-8-aminoquinolinyl aromatic amides with maleimides results in C-H alkylation at the ortho position of the amide. The reaction path and formation of the alkylation product with density functional theory (DFT) calculations were done. The detailed computational study showed that the reaction proceeds in the following steps: (I) deprotonation of the NH amide proton, (II) oxidative addition of the ortho C-H bond, (III) migratory insertion of the maleimide, (IV) reductive elimination with the C-C bond formation, and (V) protonation. The energetic span model showed that the turnover frequency (TOF)-determining transition state (TDTS) is the oxidative addition, while the TOF-determining intermediate (TDI) is the formation of an Rh(I)-complex after N-H deprotonation. It was also found that the change in the oxidation number of the Rh catalyst is a key determinant of the reaction path.
Collapse
Affiliation(s)
- Attila Taborosi
- Institute of Quantum Beam Science, Ibaraki University, 310-8512 Mito, Ibaraki, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 319-1106 Tokai, Ibaraki, Japan
| | - Oiyuan He
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 565-0871 Suita, Osaka, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 565-0871 Suita, Osaka, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, 565-0871 Suita, Osaka, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, 310-8512 Mito, Ibaraki, Japan.,Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 319-1106 Tokai, Ibaraki, Japan
| |
Collapse
|
5
|
Yamazaki K, Rej S, Ano Y, Chatani N. An Unusual Perpendicular Metallacycle Intermediate is the Origin of Branch Selectivity in the Rh(II)-Catalyzed C–H Alkylation of Aryl Sulfonamides with Vinylsilanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
6
|
Takahashi K, Iwasawa N. Reversible C–C Double Bond Cleavage to Form a Metal Carbene and an Alkene Enabled on an Iridium Complex Bearing a Pincer-type Alkoxycarbene Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kohei Takahashi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama,
Meguro-ku, Tokyo 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama,
Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
7
|
Shabani S, Wu Y, Ryan HG, Hutton CA. Progress and perspectives on directing group-assisted palladium-catalysed C-H functionalisation of amino acids and peptides. Chem Soc Rev 2021; 50:9278-9343. [PMID: 34254063 DOI: 10.1039/d0cs01441a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide modifications can unlock a variety of compounds with structural diversity and abundant biological activity. In nature, peptide modifications, such as functionalisation at the side-chain position of amino acids, are performed using post-translational modification enzymes or incorporation of unnatural amino acids. However, accessing these modifications remains a challenge for organic chemists. During the past decades, selective C-H activation/functionalisation has attracted considerable attention in synthetic organic chemistry as a pathway to peptide modification. Various directing group strategies have been discovered that assist selective C-H activation. In particular, bidentate directing groups that enable tuneable and reversible coordination are now recognised as one of the most efficient methods for the site-selective C-H activation and functionalisation of numerous families of organic compounds. Synthetic peptide chemists have harnessed bidentate directing group strategies for selective functionalisation of the β- and γ-positions of amino acids. This method has been expanded and recognised as an effective device for the late stage macrocyclisation and total synthesis of complex peptide natural products. In this review, we discuss various β-, γ-, and δ-C(sp3)-H bond functionalisation reactions of amino acids for the formation of C-X bonds with the aid of directing groups and their application in late-stage macrocyclisation and the total synthesis of complex peptide natural products.
Collapse
Affiliation(s)
- Sadegh Shabani
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia.
| | | | | | | |
Collapse
|
8
|
Das A, Chatani N. Rh(II)-Catalyzed C-H Alkylation of Benzylamines with Unactivated Alkenes: The Influence of Acid on Linear and Branch Selectivity. Org Lett 2021; 23:4273-4278. [PMID: 33988384 DOI: 10.1021/acs.orglett.1c01224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rh-catalyzed C-H alkylation of benzylamine derivatives with unactivated 1-alkenes that proceeds via a picolinamide directing group is reported. The crucial role of an acid additive in this transformation is confirmed. Aromatic acids showed high linear selectivity, and aliphatic acids provided branched alkylation products as the major product. The reaction has a broad scope for benzylamines and alkenes. Deuterium labeling experiments suggest that a Rh-carbene intermediate is involved in the case of linear product formation. A different reaction pathway, however, appears to be involved in the case of branched alkylation products, and this pathway also appeared to be a minor pathway in linear-selective reactions.
Collapse
Affiliation(s)
- Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Wang CA, Chatani N. Ruthenium(II)-catalyzed Arylation of ortho-C–H Bonds in 2-Aroyl-imidazoles with Aryl Halides. CHEM LETT 2021. [DOI: 10.1246/cl.200886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chen-an Wang
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Strategic evolution in transition metal-catalyzed directed C–H bond activation and future directions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213683] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Ankade SB, Shabade AB, Soni V, Punji B. Unactivated Alkyl Halides in Transition-Metal-Catalyzed C–H Bond Alkylation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05580] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shidheshwar B. Ankade
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anand B. Shabade
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Vineeta Soni
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR−National Chemical Laboratory (CSIR−NCL), Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
12
|
Das A, Chatani N. Rh(i)- and Rh(ii)-catalyzed C-H alkylation of benzylamines with alkenes and its application in flow chemistry. Chem Sci 2021; 12:3202-3209. [PMID: 34164088 PMCID: PMC8179371 DOI: 10.1039/d0sc05813k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Rh-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported. Both Rh(i) and Rh(ii) complexes can be used as active catalysts for this transformation. In addition, a flow set up was designed to successfully mimic this process under flow conditions. Several examples are presented under flow conditions and it was confirmed that a flow process is advantageous over a batch process. Deuterium labelling experiments were performed to elucidate the mechanism of the reaction, and the results indicated a possible carbene mechanism for this C–H alkylation process. Rh(i)- and Rh(ii)-catalyzed C–H alkylation of benzylamines with alkenes using a picolinamide derivative as a directing group is reported under both batch and flow.![]()
Collapse
Affiliation(s)
- Amrita Das
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
13
|
Tian Y, Liu X, He B, Ren Y, Su W. A facile method for Rh-catalyzed decarbonylative ortho-C–H alkylation of (hetero)arenes with alkyl carboxylic acids. RSC Adv 2021; 11:19827-19831. [PMID: 35479217 PMCID: PMC9033830 DOI: 10.1039/d1ra03992j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
A facile and effective method for Rh-catalyzed direct ortho-alkylation of C–H bonds in (hetero)arenes with commercially available carboxylic acids has been developed. This strategy was initiated by in situ conversion of carboxylic acids to anhydrides which, without isolation, underwent Rh-catalyzed direct decarbonylative cross-coupling of aryl carboxamides containing 8-aminoquinoline. The reaction proceeds with high regioselectivity and exhibits a broad substrate scope as well as functional group tolerance. A facile and effective method for Rh-catalyzed direct ortho-alkylation of C–H bonds in (hetero)arenes with commercially available carboxylic acids has been developed.![]()
Collapse
Affiliation(s)
- Yiqiang Tian
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- China
- State Key Laboratory of Structural Chemistry
| | - Xiaojie Liu
- College of Chemistry
- Fuzhou University
- Fuzhou 350116
- China
- State Key Laboratory of Structural Chemistry
| | - Bangyue He
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Yuxi Ren
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| | - Weiping Su
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
| |
Collapse
|
14
|
Ohara N, Rej S, Chatani N. Rh(I)-catalyzed Addition of the ortho C-H Bond in Aryl Sulfonamides to Maleimides. CHEM LETT 2020. [DOI: 10.1246/cl.200353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nozomi Ohara
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Yu SM, Snavely WK, Chaudhari RV, Subramaniam B. Butadiene hydroformylation to adipaldehyde with Rh-based catalysts: Insights into ligand effects. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Rej S, Chatani N. Rh(ii)-catalyzed branch-selective C-H alkylation of aryl sulfonamides with vinylsilanes. Chem Sci 2020; 11:389-395. [PMID: 32206270 PMCID: PMC7069504 DOI: 10.1039/c9sc04308j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/09/2019] [Indexed: 01/17/2023] Open
Abstract
Rhodium(ii)-catalyzed unusual branch-selective ortho-C-H alkylation of aryl sulfonamides with vinylsilanes was achieved using an 8-aminoquinoline directing group. Notably, the para-substituted aryl sulfonamides gave mono-(branched)alkylated products exclusively without the formation of any double C-H alkylated byproducts. The results of deuterium labeling experiments suggest that both hydrometalation and carbometalation pathways are involved in this conversion.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Naoto Chatani
- Department of Applied Chemistry , Faculty of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| |
Collapse
|
17
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 587] [Impact Index Per Article: 146.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
18
|
Wang CA, Chatani N. Ruthenium(ii)-catalyzed acyloxylation of the ortho-C–H bond in 2-aroyl-imidazoles with carboxylic acids. Org Chem Front 2020. [DOI: 10.1039/d0qo00920b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The reaction of 2-aroyl-imidazoles with carboxylic acids using [RuCl2(p-cymene)]2 as the catalyst and Ag2CO3 as the oxidant results in ortho-C–H acyloxylation to afford acyloxylation products.
Collapse
Affiliation(s)
- Chen-an Wang
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| | - Naoto Chatani
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
19
|
Interfacial nanoarchitectonics for molecular manipulation and molecular machine operation. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Wang CA, Rej S, Chatani N. Ruthenium(II)-catalyzed Alkylation of C-H Bonds in Aromatic Amides with Vinylsilanes. CHEM LETT 2019. [DOI: 10.1246/cl.190483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Chen-an Wang
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
|
23
|
Yamaguchi T, Natsui S, Shibata K, Yamazaki K, Rej S, Ano Y, Chatani N. Rhodium-Catalyzed Alkylation of C-H Bonds in Aromatic Amides with Non-activated 1-Alkenes: The Possible Generation of Carbene Intermediates from Alkenes. Chemistry 2019; 25:6915-6919. [PMID: 30900353 DOI: 10.1002/chem.201901300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 12/31/2022]
Abstract
The alkylation of C-H bonds (hydroarylation) in aromatic amides with non-activated 1-alkenes using a rhodium catalyst and assisted by an 8-aminoquinoline directing group is reported. The addition of a carboxylic acid is crucial for the success of this reaction. The results of deuterium-labeling experiments indicate that one of deuterium atoms in the alkene is missing, suggesting that the reaction does not proceed through the commonly accepted mechanism for C-H alkylation reactions. Instead the reaction is proposed to proceed through a carbene mechanism. The carbene mechanism is also supported by preliminary DFT calculations.
Collapse
Affiliation(s)
- Takuma Yamaguchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Satoko Natsui
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaname Shibata
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
24
|
Gao TH, Wang CM, Tang KX, Xu YG, Sun LP. Amide-Oxazoline Directed ortho
-C-H Nitration Mediated by CuII. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tian-Hong Gao
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Chun-Meng Wang
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Kai-Xiang Tang
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Yun-Gen Xu
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| | - Li-Ping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization; Department of Medicinal Chemistry; China Pharmaceutical University; 24 Tongjiaxiang 210009 Nanjing P.R. China
| |
Collapse
|
25
|
Rej S, Chatani N. Rhodiumkatalysierte sp 2‐ und sp 3‐C‐H‐Funktionalisierungen mit entfernbaren dirigierenden Gruppen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| |
Collapse
|
26
|
Rej S, Chatani N. Rhodium-Catalyzed C(sp 2 )- or C(sp 3 )-H Bond Functionalization Assisted by Removable Directing Groups. Angew Chem Int Ed Engl 2019; 58:8304-8329. [PMID: 30311719 DOI: 10.1002/anie.201808159] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/12/2018] [Indexed: 12/25/2022]
Abstract
In recent years, transition-metal-catalyzed C-H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C-H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C-H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C-H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh-catalyzed C-H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N-heteroaromatic derivatives.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
27
|
Rej S, Chatani N. Rhodium(i)-catalyzed mono-selective C–H alkylation of benzenesulfonamides with terminal alkenes. Chem Commun (Camb) 2019; 55:10503-10506. [DOI: 10.1039/c9cc05219d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of C–H alkylation of benzenesulfonamides with alkenes is reported. Deuterium labeling experiments indicate that an unusual 1,2-H shift mechanism to generate a carbene rhodium intermediate is involved.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| | - Naoto Chatani
- Department of Applied Chemistry
- Faculty of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
28
|
He Q, Chatani N. A Synthesis of 3,4-Dihydroisoquinolin-1(2H)-one via the Rhodium-Catalyzed Alkylation of Aromatic Amides with N-Vinylphthalimide. J Org Chem 2018; 83:13587-13594. [DOI: 10.1021/acs.joc.8b02249] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiyuan He
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Ariga K, Jackman JA, Cho NJ, Hsu SH, Shrestha LK, Mori T, Takeya J. Nanoarchitectonic-Based Material Platforms for Environmental and Bioprocessing Applications. CHEM REC 2018; 19:1891-1912. [PMID: 30230688 DOI: 10.1002/tcr.201800103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
The challenges of pollution, environmental science, and energy consumption have become global issues of broad societal importance. In order to address these challenges, novel functional systems and advanced materials are needed to achieve high efficiency, low emission, and environmentally friendly performance. A promising approach involves nanostructure-level controls of functional material design through a novel concept, nanoarchitectonics. In this account article, we summarize nanoarchitectonic approaches to create nanoscale platform structures that are potentially useful for environmentally green and bioprocessing applications. The introduced platforms are roughly classified into (i) membrane platforms and (ii) nanostructured platforms. The examples are discussed together with the relevant chemical processes, environmental sensing, bio-related interaction analyses, materials for environmental remediation, non-precious metal catalysts, and facile separation for biomedical uses.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,Department of Medicine, Stanford University Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan, R.O.C
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Jun Takeya
- Graduate School of Frontier Sciences, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
30
|
Xu S, Takamatsu K, Hirano K, Miura M. Nickel‐Catalyzed Stereospecific C−H Coupling of Benzamides with Epoxides. Angew Chem Int Ed Engl 2018; 57:11797-11801. [DOI: 10.1002/anie.201807664] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Shibo Xu
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Kazutaka Takamatsu
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
31
|
Xu S, Takamatsu K, Hirano K, Miura M. Nickel-Catalyzed Stereospecific C−H Coupling of Benzamides with Epoxides. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shibo Xu
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Kazutaka Takamatsu
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; Suita Osaka 565-0871 Japan
| |
Collapse
|
32
|
Rej S, Chatani N. Rhodium(I)-Catalyzed C8-Alkylation of 1-Naphthylamide Derivatives with Alkenes through a Bidentate Picolinamide Chelation System. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01675] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Ueno R, Natsui S, Chatani N. Cobalt(II)-Catalyzed Acyloxylation of C–H Bonds in Aromatic Amides with Carboxylic Acids. Org Lett 2018; 20:1062-1065. [DOI: 10.1021/acs.orglett.7b04020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rina Ueno
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoko Natsui
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|