1
|
Chen Y, Zheng Y, Wang J, Zhao X, Liu G, Lin Y, Yang Y, Wang L, Tang Z, Wang Y, Fang Y, Zhang W, Zhu X. Ultranarrow-bandgap small-molecule acceptor enables sensitive SWIR detection and dynamic upconversion imaging. SCIENCE ADVANCES 2024; 10:eadm9631. [PMID: 38838154 DOI: 10.1126/sciadv.adm9631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Short-wavelength infrared (SWIR) light detection plays a key role in modern technologies. Emerging solution-processed organic semiconductors are promising for cost-effective, flexible, and large-area SWIR organic photodiodes (OPDs). However, the spectral responsivity (R) and specific detectivity (D*) of SWIR OPDs are restricted by insufficient exciton dissociation and high noise current. In this work, we synthesized an SWIR small molecule with a spectral coverage of 0.3 to 1.3 micrometers peaking at 1100 nanometers. The photodiode, with optimized exciton dissociation, charge injection, and SWIR transmittance, achieves a record high R of 0.53 ampere per watt and D* of 1.71 × 1013 Jones at 1110 nanometers under zero bias. The D* at 1 to 1.2 micrometers surpasses that of the uncooled commercial InGaAs photodiode. Furthermore, large-area semitransparent all-organic upconversion devices integrating the SWIR photodiode realized static and dynamic SWIR-to-visible imaging, along with excellent upconversion efficiency and spatial resolution. This work provides alternative insights for developing sensitive organic SWIR detection.
Collapse
Affiliation(s)
- Yongjie Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Yingqi Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian District, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Jing Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xuan Zhao
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Guanhao Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Haidian District, Beijing, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yi Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yubo Yang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Lixiang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zheng Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Haidian District, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Haidian District, Beijing, China
| |
Collapse
|
2
|
Chen M, Sato W, Shang R, Nakamura E. Iron-Catalyzed Tandem Cyclization of Diarylacetylene to a Strained 1,4-Dihydropentalene Framework for Narrow-Band-Gap Materials. J Am Chem Soc 2021; 143:6823-6828. [PMID: 33929185 DOI: 10.1021/jacs.1c03394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Carbon bridging in a form of a strained 1,4-dihydropentalene framework is an effective strategy for flattening and stabilizing oligophenylenevinylene systems for the development of optoelectronic materials. However, efficient and flexible methods for making such a strained ring system are lacking. We report herein a mild and versatile synthetic access to the 1,4-dihydropentalene framework enabled by iron-catalyzed single-pot tandem cyclization of a diarylacetylene using FeCl2 and PPh3 as catalyst, magnesium/LiCl as a reductant, and 1,2-dichloropropane as a mild oxidant. The new annulation method features two iron-catalyzed transformations used in tandem, a reductive acetylenic carboferration and an oxidation-induced ring contraction of a ferracycle under mild oxidative conditions. The new method provides access not only to a variety of substituted indeno[2,1-a]indenes but also to their thiophene congeners, 4,9-dihydrobenzo[4,5]pentaleno[1,2-b]thiophene (CPTV) and 4,8-dihydropentaleno[1,2-b:4,5-b']dithiophenes (CTV). With its high highest occupied molecular orbital level and narrow optical gap, CTV serves as a donor unit in a narrow-band-gap non-fullerene acceptor, which shows absorption extending over 1000 nm in the film state, and has found use in a near-infrared photodetector device that exhibited an external quantum efficiency of 72.4% at 940 nm.
Collapse
Affiliation(s)
- Mengqing Chen
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wataru Sato
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|