1
|
Hasegawa S, Masuda S, Takano S, Harano K, Kikkawa J, Tsukuda T. Synergistically Activated Pd Atom in Polymer-Stabilized Au 23Pd 1 Cluster. ACS NANO 2022; 16:16932-16940. [PMID: 36191255 DOI: 10.1021/acsnano.2c06996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single Pd atom doped Au23Pd1 clusters stabilized by polyvinylpyrrolidone (Au23Pd1:PVP) were selectively synthesized by kinetically controlled coreduction of the Au and Pd precursor ions. The geometric structure of Au23Pd1:PVP was investigated by density functional theory calculation, aberration-corrected transmission electron microscopy, extended X-ray absorption fine structure analysis, Fourier transform infrared spectroscopy of adsorbed CO, and hydrogenation catalysis. These results showed that Au23Pd1:PVP takes polydisperse but the same atomic arrangements as undoped Au24:PVP while exposing all the atoms including the Pd atom on the surface. Au23Pd1:PVP exhibited a significantly higher catalytic activity than Au24:PVP for the aerobic oxidation of p-substituted benzyl alcohols. The kinetic studies showed that the rate-determining step was the hydride abstraction from the α-carbon of the alkoxides for both systems. The activation energy for hydride abstraction by Au23Pd1:PVP was lower than that by Au24:PVP, indicating that the doped Pd atom acts as the active center.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koji Harano
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Jun Kikkawa
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto615-8520, Japan
| |
Collapse
|
2
|
Nguyen NTK, Lebastard C, Wilmet M, Dumait N, Renaud A, Cordier S, Ohashi N, Uchikoshi T, Grasset F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb 6, Mo 6, Ta 6, W 6, Re 6): inorganic 0D and 2D powders and films. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:547-578. [PMID: 36212682 PMCID: PMC9542349 DOI: 10.1080/14686996.2022.2119101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/29/2023]
Abstract
This review is dedicated to various functional nanoarchitectonic nanocomposites based on molecular octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6). Powder and film nanocomposites with two-dimensional, one-dimensional and zero-dimensional morphologies are presented, as well as film matrices from organic polymers to inorganic layered oxides. The high potential and synergetic effects of these nanocomposites for biotechnology applications, photovoltaic, solar control, catalytic, photonic and sensor applications are demonstrated. This review also provides a basic level of understanding how nanocomposites are characterized and processed using different techniques and methods. The main objective of this review would be to provide guiding significance for the design of new high-performance nanocomposites based on transition metal atom clusters.
Collapse
Affiliation(s)
- Ngan T. K. Nguyen
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Young Scientists, ICYS-Sengen, Global Networking Division, NIMS, Tsukuba, Japan
| | - Clément Lebastard
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Maxence Wilmet
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
- Saint Gobain Research Paris, Aubervilliers, France
| | - Noée Dumait
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | - Adèle Renaud
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| | | | - Naoki Ohashi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Tetsuo Uchikoshi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, NIMS, Tsukuba, Japan
| | - Fabien Grasset
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Université Rennes, CNRS, ISCR, UMR6226, Rennes, France
| |
Collapse
|
3
|
Hasegawa S, Masuda S, Takano S, Harano K, Tsukuda T. Polymer-Stabilized Au 38 Cluster: Atomically Precise Synthesis by Digestive Ripening and Characterization of the Atomic Structure and Oxidation Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
4
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
5
|
Zhang Z, Ikeda T, Murayama H, Honma T, Tokunaga M, Motoyama Y. Anchored Palladium Complex-Generated Clusters on Zirconia: Efficiency in Reductive N-Alkylation of Amines with Carbonyl Compounds under Hydrogen Atmosphere. Chem Asian J 2022; 17:e202101243. [PMID: 35266303 DOI: 10.1002/asia.202101243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/07/2022]
Abstract
Carbon-nitrogen bond formation is an important method on both laboratory and industrial scales because it realizes the production of valuable pharmaceuticals, agrochemicals, and fine chemicals. Direct reductive N-alkylation of amines with carbonyl compounds via intermediary imine compounds, especially under catalytic hydrogenation conditions, is one of the most convenient, economical, and environmentally friendly methods for this process. Here we report a novel palladium species on zirconia having specific activity towards hydrogenation of imines but other carbonyl groups remaining intact. The present catalytic property offers a practical synthetic method of functionalized secondary amines by reductive N-alkylation under mild conditions with high atom-efficiency. Mechanistic studies revealed that the catalytically active species is the palladium cluster, which is generated in situ from molecular palladium complexes on the support by exposure to atmospheric hydrogen. These fundamental findings are expected to progress in developing novel cluster catalysts for chemical processes directed towards a sustainable society.
Collapse
Affiliation(s)
- Zhenzhong Zhang
- Department of Advanced Science and Technology, Toyota Technological Institute, Nagoya, 468-8511, Japan
| | - Takuya Ikeda
- Department of Advanced Science and Technology, Toyota Technological Institute, Nagoya, 468-8511, Japan
| | - Haruno Murayama
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), Spring-8, Sayo, Hyogo, 679-8198, Japan
| | - Makoto Tokunaga
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yukihiro Motoyama
- Department of Advanced Science and Technology, Toyota Technological Institute, Nagoya, 468-8511, Japan.,Research Center for Smart Energy Technology, Toyota Technological Institute, Nagoya, 468-8511, Japan
| |
Collapse
|
6
|
Matsuda S, Masuda S, Takano S, Ichikuni N, Tsukuda T. Synergistic Effect in Ir- or Pt-Doped Ru Nanoparticles: Catalytic Hydrogenation of Carbonyl Compounds under Ambient Temperature and H 2 Pressure. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shotaro Matsuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuyuki Ichikuni
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Yayoicho 1-33, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
7
|
Hasegawa S, Takano S, Harano K, Tsukuda T. New Magic Au 24 Cluster Stabilized by PVP: Selective Formation, Atomic Structure, and Oxidation Catalysis. JACS AU 2021; 1:660-668. [PMID: 34467325 PMCID: PMC8395683 DOI: 10.1021/jacsau.1c00102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 06/13/2023]
Abstract
An unprecedented magic number cluster, Au24Cl x (x = 0-3), was selectively synthesized by the kinetically controlled reduction of the Au precursor ions in a microfluidic mixer in the presence of a large excess of poly(N-vinyl-2-pyrrolidone) (PVP). The atomic structure of the PVP-stabilized Au24Cl x was investigated by means of aberration-corrected transmission electron microscopy (ACTEM) and density functional theory (DFT) calculations. ACTEM video imaging revealed that the Au24Cl x clusters were stable against dissociation but fluctuated during the observation period. Some of the high-resolution ACTEM snapshots were explained by DFT-optimized isomeric structures in which all the constituent atoms were located on the surface. This observation suggests that the featureless optical spectrum of Au24Cl x is associated with the coexistence of distinctive isomers. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of CO adsorbates revealed the electron-rich nature of Au24Cl x clusters due to the interaction with PVP. The Au24Cl x :PVP clusters catalyzed the aerobic oxidation of benzyl alcohol derivatives without degradation. Hammett analysis and the kinetic isotope effect indicated that the hydride elimination by Au24Cl x was the rate-limiting step with an apparent activation energy of 56 ± 3 kJ/mol, whereas the oxygen pressure dependence of the reaction kinetics suggested the involvement of hydrogen abstraction by coadsorbed O2 as a faster process.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|