1
|
Zhu L, Zhao B, Xie K, Gui WT, Niu SL, Zheng PF, Chen YC, Qi XW, Ouyang Q. Metal π-Lewis base activation in palladium(0)-catalyzed trans-alkylative cyclization of alkynals. Chem Sci 2024; 15:13032-13040. [PMID: 39148807 PMCID: PMC11323327 DOI: 10.1039/d4sc04190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
The Pd(0)-mediated umpolung reaction of an alkyne to achieve trans-difunctionalization is a potential synthetic methodology, but its insightful activation mechanism of Pd(0)-alkyne interaction has yet to be established. Here, a Pd(0)-π-Lewis base activation mode is proposed and investigated by combining theoretical and experimental studies. In this activation mode, the Pd(0) coordinates to the alkyne group and enhances its nucleophilicity through π-back-donation, facilitating the nucleophilic attack on the aldehyde to generate a trans-Pd(ii)-vinyl complex. Ligand-effect studies reveal that the more electron-donating one would accelerate the reaction, and the cyclization of the challenging flexible C- or O-tethered substrates has been realized. The origin of regioselectivities is also explicated by the newly proposed metal π-Lewis base activation mode.
Collapse
Affiliation(s)
- Lei Zhu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
- Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Shapingba Chongqing 400038 China
| | - Bo Zhao
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Ke Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Wu-Tao Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Sheng-Li Niu
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| | - Ying-Chun Chen
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China
| | - Xiao-Wei Qi
- Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University Shapingba Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University Shapingba Chongqing 400038 China
| |
Collapse
|
2
|
Canfield PJ, Reimers JR, Crossley MJ. "Polytopal Rearrangement Model of Stereoisomerization" and Its Potential as the Basis for a Systematic Model of All Stereoisomerism. ACS ORGANIC & INORGANIC AU 2024; 4:356-372. [PMID: 39132020 PMCID: PMC11311049 DOI: 10.1021/acsorginorgau.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 08/13/2024]
Abstract
The term "polytopal rearrangement" describes any shape changing process operating on a coordination "polyhedron"-the solid figure defined by the positions of the ligand atoms directly attached to the central atom of a coordination entity. Developed in the latter third of the last century, the polytopal rearrangement model of stereoisomerization is a general mathematical approach for analyzing and accommodating the complexity of such processes for any coordination number. The motivation for the model was principally to deal with the complexity, such as Berry pseudorotation in pentavalent phosphorus species, arising from rearrangements in inorganic coordination complexes of higher coordination numbers. The model is also applicable to lower coordination centers, for example, thermal "inversion" at nitrogen in NH3 and amines. We present the history of the model focusing on its essential features, and review some of the more subtle aspects addressed in recent literature. We then introduce a more detailed and rigorous modern approach for describing such processes using an assembly of existing concepts, with the addition of formally described terminology and representations. In our outlook, we contend that the rigorous and exhaustive application of the principles of the polytopal rearrangement model, when combined with torsional isomerism, will provide a basis for a mathematically complete, general, and systematic classification for all stereoisomerism and stereoisomerization. This is essential for comprehensively mapping chemical structure and reaction spaces.
Collapse
Affiliation(s)
| | - Jeffrey R. Reimers
- International
Center for Quantum and Molecular Structures and the School of Physics, Shanghai University, Shanghai 200444, China
- School of
Mathematical and Physical Sciences, University
of Technology Sydney, Sydney, NSW 2007 Australia
| | | |
Collapse
|
3
|
Kania MJ, Reyes A, Neufeldt SR. Oxidative Addition of (Hetero)aryl (Pseudo)halides at Palladium(0): Origin and Significance of Divergent Mechanisms. J Am Chem Soc 2024; 146:19249-19260. [PMID: 38959060 DOI: 10.1021/jacs.4c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Two limiting mechanisms are possible for oxidative addition of (hetero)aryl (pseudo)halides at Pd(0): a 3-centered concerted and a nucleophilic displacement mechanism. Until now, there has been little understanding about when each mechanism is relevant. Prior investigations to distinguish between these pathways were limited to a few specific combinations of the substrate and ligand. Here, we computationally evaluated over 180 transition structures for oxidative addition in order to determine mechanistic trends based on substrate, ligand(s), and coordination number. Natural abundance 13C kinetic isotope effects provide experimental results consistent with computational predictions. Key findings include that (1) differences in highest occupied molecular orbital (HOMO) symmetries dictate that, although 12e- PdL is strongly biased toward a 3-centered concerted mechanism, 14e- PdL2 often prefers a nucleophilic displacement mechanism; (2) ligand electronics and sterics, including ligand bite angle, influence the preferred mechanism of the reaction at PdL2; (3) phenyl triflate always reacts through a displacement mechanism regardless of the catalyst structure due to the stability of a triflate anion and the inability of oxygen to effectively donate electron density to Pd; and (4) the high reactivity of C-X bonds adjacent to nitrogen in pyridine substrates relates to stereoelectronic stabilization of a nucleophilic displacement transition state. This work has implications for controlling rate and selectivity in catalytic couplings, and we demonstrate application of the mechanistic insight toward chemodivergent cross-couplings of bromochloroheteroarenes.
Collapse
Affiliation(s)
- Matthew J Kania
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Albert Reyes
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Sharon R Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
4
|
Iida T, Sato R, Yoshigoe Y, Kanbara T, Kuwabara J. Mechanistic study on the reductive elimination of (aryl)(fluoroaryl)palladium complexes: a key step in regiospecific dehydrogenative cross-coupling. Dalton Trans 2024. [PMID: 38958099 DOI: 10.1039/d4dt01453g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Cross-dehydrogenative coupling (CDC) reactions have attracted attention as short-step synthetic methods for C-C bond formation. Recently, we have developed CDC reactions between naphthalene and fluorobenzene. Rather than exhibiting general regioselectivity, this reaction proceeds selectively at the β-position of naphthalene. In this study, investigation using model complexes as reaction intermediates revealed that the origin of the unique selectivity is the exclusive occurrence of reductive elimination at the β-position. Detailed studies on the reductive elimination showed that the steric hindrance of the naphthyl group and the electron-withdrawing properties of fluorobenzene determine the position at which the reductive elimination reaction proceeds. These results show that the selectivity of the C-H functionalisation of polycyclic aromatic hydrocarbons (PAHs) is determined not by the C-H cleavage step, but by the subsequent reductive elimination step. The regioselective CDC reaction was adaptable to various PAHs but was less selective for pyrene with extended π-conjugation. In fluorobenzene substrates, the F atoms at the two ortho positions of the C-H moiety are necessary for high selectivity. The substrate ranges are in good agreement with the proposed mechanism, in which the reductive elimination step determines the regioselectivity.
Collapse
Affiliation(s)
- Tomoki Iida
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Ryota Sato
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Yusuke Yoshigoe
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Takaki Kanbara
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | - Junpei Kuwabara
- Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
- Tsukuba Research Center for Energy Materials Science (TREMS), Institute of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
5
|
Iyer K, Kavthe RD, Lammert RM, Yirak JR, Lipshutz BH. Ligated Pd-Catalyzed Aminations of Aryl/Heteroaryl Halides with Aliphatic Amines under Sustainable Aqueous Micellar Conditions. JACS AU 2024; 4:680-689. [PMID: 38425930 PMCID: PMC10900223 DOI: 10.1021/jacsau.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Sustainable technology for constructing Pd-catalyzed C-N bonds involving aliphatic amines is reported. A catalytic system that relies on low levels of recyclable precious metal, a known and commercially available ligand, and a recyclable aqueous medium are combined, leading to a newly developed procedure. This new technology can be used in ocean water with equal effectiveness. Applications involving highly challenging reaction partners constituting late-stage functionalization are documented, as is a short but efficient synthesis of the drug naftopidil. Comparisons with existing aminations highlight the many advances being offered.
Collapse
Affiliation(s)
| | | | - Robert M. Lammert
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Jordan R. Yirak
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bruce H. Lipshutz
- Department of Chemistry and
Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Rubel CZ, He WJ, Wisniewski SR, Engle KM. Benchtop Nickel Catalysis Invigorated by Electron-Deficient Diene Ligands. Acc Chem Res 2024; 57:312-326. [PMID: 38236260 DOI: 10.1021/acs.accounts.3c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
ConspectusDue to the rarity of precious metals like palladium, nickel catalysis is becoming an increasingly important player in organic synthesis, especially for the formation of bonds with sp3-hybridized carbon centers. Traditionally, catalytic processes involving active Ni(0) species have relied on Ni(COD)2 or in situ reduction of Ni(II) salts. However, Ni(COD)2 is an air- and temperature-sensitive material that requires use in an inert-atmosphere glovebox, and in situ reduction protocols of Ni(II) salts using metallic or organometallic reductants add additional complications to reaction development.This Account chronicles the development of air-stable Ni(0) precursors as replacements for Ni(COD)2 or in situ reduction. Based on Schrauzer's seminal discovery of Ni(COD)(DQ) as an air-stable zerovalent organonickel complex, our research laboratories at Scripps Research and Bristol Myers Squibb have developed a class of precatalysts based on the Ni(COD)(EDD) (EDD = electron-deficient diene) framework, relying on the steric and electronic properties of the supporting diene to render the metal center stable to air, moisture, and even silica gel but reactive to ligand substitution and redox changes.The stable Ni(0) complexes can be accessed through ligand exchange with Ni(COD)2, through reduction of Ni(acac)2 using DIBAL-H, or electrochemically via cathodic reduction of Ni(acac)2 to Ni(COD)2, followed by addition of an EDD ligand in one pot. As a toolkit, the complexes demonstrate reactivity that is equivalent or enhanced compared to Ni(COD)2, catalyzing C-C and C-N cross-couplings, Miyaura borylations, C-H activations, and other transformations. Since the initial report on Ni(COD)(DQ), its reactivity in C(sp2)-CN activation, metallophotoredox, and electric field-induced cross-coupling have also been demonstrated.By incorporating the precatalyst toolkit into reaction discovery campaigns, our laboratories have been able to perform C(sp3)-S(alkyl) couplings and metallonitrenoid carboamination, both of which represent challenging transformations that were inaccessible with traditional phosphine, nitrogen, or electron-deficient olefin ligands. Computational and experimental studies demonstrate how the quinone ligands are hemilabile, adopting η1(O)-bound geometries to relieve steric strain or stabilize transition states and intermediates; redox-active, able to transiently oxidize the metal center; and electron-withdrawing or -donating, depending on metal oxidation state and coordination geometry. These studies show how the ligands enable key steps in catalysis beyond imparting air-stability.Since our report documenting the catalytic activity of Ni(COD)(DQ), many other laboratories have also observed unique reactivity with this precatalyst. Ni(COD)(DQ) was found to offer superior reactivity to Ni(COD)2 in C-N cross coupling to form N,N-diaryl sulfonamides and in preparation of biaryls from aryl halides and benzene through a Ni-mediated, base-assisted homolytic aromatic substitution.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Wen-Ji He
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
7
|
Yan W, Carter S, Hsieh CT, Krause JA, Cheng MJ, Zhang S, Liu W. Copper-Carbon Homolysis Competes with Reductive Elimination in Well-Defined Copper(III) Complexes. J Am Chem Soc 2023; 145:26152-26159. [PMID: 37992224 DOI: 10.1021/jacs.3c08510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Despite the recent advancements of Cu catalysis for the cross-coupling of alkyl electrophiles and the frequently proposed involvement of alkyl-Cu(III) complexes in such reactions, little is known about the reactivity of these high-valent complexes. Specifically, although the reversible interconversion between an alkyl-CuIII complex and an alkyl radical/CuII pair has been frequently proposed in Cu catalysis, direct observation of such steps in well-defined CuIII complexes remains elusive. In this study, we report the synthesis and investigation of alkyl-CuIII complexes, which exclusively undergo a Cu-C homolysis pathway to generate alkyl radicals and CuII species. Kinetic studies suggest a bond dissociation energy of 28.6 kcal/mol for the CuIII-C bonds. Moreover, these four-coordinate complexes could be converted to a solvated alkyl-CuIII-(CF3)2, which undergoes highly efficient C-CF3 bond-forming reductive elimination even at low temperatures (-4 °C). These results provide strong support for the reversible recombination of alkyl radicals with CuII to form alkyl-CuIII species, an elusive step that has been proposed in Cu-catalyzed mechanisms. Furthermore, our work has demonstrated that the reactivity of CuIII complexes could be significantly influenced by subtle changes in the coordination environment. Lastly, the observation of the highly reactive neutral alkyl-CuIII-(CF3)2 species (or with weakly bound solvent molecules) suggests they might be the true intermediates in many Cu-catalyzed trifluoromethylation reactions.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
8
|
Hierlmeier G, Tosatti P, Puentener K, Chirik PJ. Arene Insertion with Pincer-Supported Molybdenum-Hydrides: Determination of Site Selectivity, Relative Rates, and Arene Complex Formation. J Am Chem Soc 2023; 145:21027-21039. [PMID: 37704186 DOI: 10.1021/jacs.3c06961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The synthesis of phosphino(oxazoline)pyridine-supported molybdenum(0) cycloocta-1,5-diene complexes is described. Exposure of these complexes to dihydrogen in the presence of an arene resulted in insertion of the substrate into the molybdenum hydride bond and afforded the corresponding molybdenum cyclohexadienyl hydrides. For mono- and disubstituted arenes, the site selectivity for insertion of the most substituted bond increases with increasing size of the substituent from methyl to ethyl, iso-propyl, and tert-butyl. In contrast, 1,3,5-trisubstituted arenes underwent insertion with exclusive site selectivity. Relative rates of insertion were determined by competition experiments and established faster insertions for electron-rich arenes. Introduction of electron-withdrawing trifluoromethyl groups on the arene resulted in decreased relative rates of insertion and an increased rate for H2 reductive elimination, favoring formation of the corresponding molybdenum η6-arene complex. Studies on the reductive elimination of the cyclohexadienyl ligand with the hydride enabled the synthesis of an enantioenriched cyclohexa-1,3-diene. This study provides new insights into the ligand requirements for catalytic arene hydrogenation and a new strategy for selective arene reduction.
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Warioba CS, Jackson LG, Neal MA, Haines BE. Computational Study on the Role of Zn(II) Z-Type Ligands in Facilitating Diaryl Reductive Elimination from Pt(II). Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chisondi S. Warioba
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Logan G. Jackson
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Marliss A. Neal
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Brandon E. Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| |
Collapse
|
10
|
Firsan S, Sivakumar V, Colacot TJ. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L 1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem Rev 2022; 122:16983-17027. [PMID: 36190916 PMCID: PMC9756297 DOI: 10.1021/acs.chemrev.2c00204] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Monoligated palladium(0) species, L1Pd(0), have emerged as the most active catalytic species in the cross-coupling cycle. Today, there are methods available to generate the highly active but unstable L1Pd(0) catalysts from stable precatalysts. While the size of the ligand plays an important role in the formation of L1Pd(0) during in situ catalysis, the latter can be precisely generated from the precatalyst by various technologies. Computational, kinetic, and experimental studies indicate that all three steps in the catalytic cycle─oxidative addition, transmetalation, and reductive elimination─contain monoligated Pd. The synthesis of precatalysts, their mode of activation, application studies in model systems, as well as in industry are discussed. Ligand parametrization and AI based data science can potentially help predict the facile formation of L1Pd(0) species.
Collapse
Affiliation(s)
- Sharbil
J. Firsan
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| | - Vilvanathan Sivakumar
- Merck
Life Science Pvt Ltd, No-12, Bommasandra-Jigani Link Road, Industrial Area, Bangalore560100, India
| | - Thomas J. Colacot
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| |
Collapse
|
11
|
Tsuji Y, Yoshida M, Kamachi T, Yoshizawa K. Oxidative Addition of Methane and Reductive Elimination of Ethane and Hydrogen on Surfaces: From Pure Metals to Single Atom Alloys. J Am Chem Soc 2022; 144:18650-18671. [PMID: 36153993 DOI: 10.1021/jacs.2c08787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidative addition of CH4 to the catalyst surface produces CH3 and H. If the CH3 species generated on the surface couple with each other, reductive elimination of C2H6 may be achieved. Similarly, H's could couple to form H2. This is the outline of nonoxidative coupling of methane (NOCM). It is difficult to achieve this reaction on a typical Pt catalyst surface. This is because methane is overoxidized and coking occurs. In this study, the authors approach this problem from a molecular aspect, relying on organometallic or complex chemistry concepts. Diagrams obtained by extending the concepts of the Walsh diagram to surface reactions are used extensively. C-H bond activation, i.e., oxidative addition, and C-C and H-H bond formation, i.e., reductive elimination, on metal catalyst surfaces are thoroughly discussed from the point of view of orbital theory. The density functional theory method for structural optimization and accurate energy calculations and the extended Hückel method for detailed analysis of crystal orbital changes and interactions play complementary roles. Limitations of monometallic catalysts are noted. Therefore, a rational design of single atom alloy (SAA) catalysts is attempted. As a result, the effectiveness of the Pt1/Au(111) SAA catalyst for NOCM is theoretically proposed. On such an SAA surface, one would expect to find a single Pt monatomic site in a sea of inert Au atoms. This is desirable for both inhibiting overoxidation and promoting reductive elimination.
Collapse
Affiliation(s)
- Yuta Tsuji
- Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Masataka Yoshida
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takashi Kamachi
- Department of Life, Environment and Applied Chemistry, Fukuoka Institute of Technology, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Hoff LV, Chesnokov GA, Linden A, Gademann K. Mechanistic Studies and Data Science-Guided Exploration of Bromotetrazine Cross-Coupling. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lukas V. Hoff
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gleb A. Chesnokov
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Aryal V, Chesley LJ, Niroula D, Sapkota RR, Dhungana RK, Giri R. Ni-Catalyzed Regio- and Stereoselective Alkylarylation of Unactivated Alkenes in γ,δ-Alkenylketimines. ACS Catal 2022; 12:7262-7268. [PMID: 37829145 PMCID: PMC10569404 DOI: 10.1021/acscatal.2c01697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We disclose a Ni-catalyzed vicinal alkylarylation of unactivated alkenes in γ,δ-alkenylketimines with aryl halides and alkylzinc reagents. The reaction produces γ-C(sp3)-branched δ-arylketones with the construction of two new C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds. Electron-deficient alkenes play crucial dual roles as ligands to stabilize reaction intermediates and to increase catalytic rates for the formation of C(sp3)-C(sp3) bonds. This alkene alkylarylation reaction is also effective for secondary alkylzinc reagents and internal alkenes, and proceeds with a complete regio- and stereocontrol, affording products with up to three contiguous all-carbon all-cis secondary stereocenters.
Collapse
Affiliation(s)
- Vivek Aryal
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Lucas J Chesley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
14
|
Ju L, Hu CT, Diao T. Strategies for Promoting Reductive Elimination of Bi- and Bis-Oxazoline Ligated Organonickel Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luchuan Ju
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Chunhua T. Hu
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
15
|
de las Heras L, Esteruelas MA, Oliván M, Oñate E. C-Cl Oxidative Addition and C-C Reductive Elimination Reactions in the Context of the Rhodium-Promoted Direct Arylation. Organometallics 2022; 41:716-732. [PMID: 35368715 PMCID: PMC8966374 DOI: 10.1021/acs.organomet.1c00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/09/2023]
Abstract
A cycle of stoichiometric elemental reactions defining the direct arylation promoted by a redox-pair Rh(I)-Rh(III) is reported. Starting from the rhodium(I)-aryl complex RhPh{κ3-P,O,P-[xant(PiPr2)2]} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene), the reactions include C-Cl oxidative addition of organic chlorides, halide abstraction from the resulting six-coordinate rhodium(III) derivatives, C-C reductive coupling between the initial aryl ligand and the added organic group, oxidative addition of a C-H bond of a new arene, and deprotonation of the generated hydride-rhodium(III)-aryl species to form a new rhodium(I)-aryl derivative. In this context, the kinetics of the oxidative additions of 2-chloropyridine, chlorobenzene, benzyl chloride, and dichloromethane to RhPh{κ3-P,O,P-[xant(PiPr2)2]} and the C-C reductive eliminations of biphenyl and benzylbenzene from [RhPh2{κ3-P,O,P-[xant(PiPr2)2]}]BF4 and [RhPh(CH2Ph){κ3-P,O,P-[xant(PiPr2)2]}]BF4, respectively, have been studied. The oxidative additions generally involve the cis addition of the C-Cl bond of the organic chloride to the rhodium(I) complex, being kinetically controlled by the C-Cl bond dissociation energy; the weakest C-Cl bond is faster added. The C-C reductive elimination is kinetically governed by the dissociation energy of the formed bond. The C(sp3)-C(sp2) coupling to give benzylbenzene is faster than the C(sp2)-C(sp2) bond formation to afford biphenyl. In spite of that a most demanding orientation requirement is needed for the C(sp3)-C(sp2) coupling than for the C(sp2)-C(sp2) bond formation, the energetic effort for the pregeneration of the C(sp3)-C(sp2) bond is lower. As a result, the weakest C-C bond is formed faster.
Collapse
Affiliation(s)
- Laura
A. de las Heras
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Miguel A. Esteruelas
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica—Instituto
de Síntesis Química y Catálisis Homogénea
(ISQCH)—Centro de Innovación en Química Avanzada
(ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
16
|
Zhang L, Zhang G, Qu H, Todarwal Y, Wang Y, Norman P, Linares M, Surin M, Zhang H, Lin J, Jiang Y. Naphthodithiophene Diimide Based Chiral π‐Conjugated Nanopillar Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Li Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Guilan Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Hang Qu
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Yogesh Todarwal
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Yun Wang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics and Scientific Visualization Group, ITN Campus Norrköping Swedish e-Science Research Centre (SeRC) Linköping University 58183 Linköping Sweden
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials Centre of Innovation and Research in Materials and Polymers (CIRMAP) University of Mons—UMONS 20 Place du Parc 7000 Mons Belgium
| | - Hui‐Jun Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Jianbin Lin
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| | - Yun‐Bao Jiang
- Department of Chemistry College of Chemistry and Chemical Engineering MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 China
| |
Collapse
|
17
|
Zhang L, Zhang G, Qu H, Todarwal Y, Wang Y, Norman P, Linares M, Surin M, Zhang HJ, Lin J, Jiang YB. Naphthodithiophene Diimide Based Chiral π-Conjugated Nanopillar Molecules. Angew Chem Int Ed Engl 2021; 60:24543-24548. [PMID: 34291529 DOI: 10.1002/anie.202107893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/07/2022]
Abstract
The synthesis, structures, and properties of [4]cyclonaphthodithiophene diimides ([4]C-NDTIs) are described. NDTIs as important n-type building blocks were catenated in the α-positions of thiophene rings via an unusual electrochemical-oxidation-promoted macrocyclization route. The thiophene-thiophene junction in [4]C-NDTIs results in an ideal pillar shape. This interesting topology, along with appealing electronic and optical properties inherited from the NDTI units, endows the [4]C-NDTIs with both near-infrared (NIR) light absorptions, strong excitonic coupling, and tight encapsulation of C60 . Stable orientations of the NDTI units in the nanopillars lead to stable inherent chirality, which enables detailed circular dichroism studies on the impact of isomeric structures on π-conjugation. Remarkably, the [4]C-NDTIs maintain the strong π-π stacking abilities of NDTI units and thus adopt two-dimensional (2D) lattice arrays at the molecular level. These nanopillar molecules have great potential to mimic natural photosynthetic systems for the development of multifunctional organic materials.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Guilan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Hang Qu
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Yogesh Todarwal
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Yun Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics and Scientific Visualization Group, ITN, Campus Norrköping, Swedish e-Science Research Centre (SeRC), Linköping University, 58183, Linköping, Sweden
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Centre of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, 20 Place du Parc, 7000, Mons, Belgium
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
18
|
Hoff LV, Schnell SD, Tomio A, Linden A, Gademann K. Cross-Coupling Reactions of Monosubstituted Tetrazines. Org Lett 2021; 23:5689-5692. [PMID: 34291632 DOI: 10.1021/acs.orglett.1c01813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Ag-mediated Pd-catalyzed cross-coupling method for 3-bromo-1,2,4,5-tetrazine with boronic acids is presented. Electronic modification of the 1,1'-bis(diphenylphosphine)ferrocene (dppf) ligand was found to be crucial for good turnover. Using this fast method, a variety of alkyl-, heteroatom-, and halide-substituted aryl- and heteroaryl-tetrazines were prepared (29 examples, up to 87% yield).
Collapse
Affiliation(s)
- Lukas V Hoff
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon D Schnell
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Tomio
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
19
|
Lansbergen B, Granatino P, Ritter T. Site-Selective C-H alkylation of Complex Arenes by a Two-Step Aryl Thianthrenation-Reductive Alkylation Sequence. J Am Chem Soc 2021; 143:7909-7914. [PMID: 34028272 PMCID: PMC8297726 DOI: 10.1021/jacs.1c03459] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/28/2022]
Abstract
Herein, we present an undirected para-selective two-step C-H alkylation of complex arenes useful for late-stage functionalization. The combination of a site-selective C-H thianthrenation with palladium-catalyzed reductive electrophile cross-coupling grants access to a diverse range of synthetically useful alkylated arenes which cannot be accessed otherwise with comparable selectivity, diversity, and practicality. The robustness of this transformation is further demonstrated by thianthrenium-based reductive coupling of two complex fragments.
Collapse
Affiliation(s)
- Beatrice Lansbergen
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Paola Granatino
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der
Ruhr, Germany
| |
Collapse
|
20
|
Lu Z, Liu S, Lan Y, Leng X, Shen Q. C(sp2)-CF3 Reductive Elimination from Well-Defined Argentate(III) Complexes [nBu4N][Ag(Ar)(CF3)3]. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zehai Lu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Shihan Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xuebing Leng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
21
|
Gioria E, del Pozo J, Lledós A, Espinet P. Understanding the Use of Phosphine-(EWO) Ligands in Negishi Cross-Coupling: Experimental and Density Functional Theory Mechanistic Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Estefanía Gioria
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Juan del Pozo
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| |
Collapse
|
22
|
Ponce-de-León J, Gioria E, Martínez-Ilarduya JM, Espinet P. Ranking Ligands by Their Ability to Ease (C 6F 5) 2Ni IIL → Ni 0L + (C 6F 5) 2 Coupling versus Hydrolysis: Outstanding Activity of PEWO Ligands. Inorg Chem 2020; 59:18287-18294. [PMID: 33289542 DOI: 10.1021/acs.inorgchem.0c02831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NiII literature complex cis-[Ni(C6F5)2(THF)2] is a synthon of cis-Ni(C6F5)2 that allows us to establish a protocol to measure and compare the ligand effect on the NiII → Ni0 reductive elimination step (coupling), often critical in catalytic processes. Several ligands of different types were submitted to this Ni-meter comparison: bipyridines, chelating diphosphines, monodentate phosphines, PR2(biaryl) phosphines, and PEWO ligands (phosphines with one potentially chelate electron-withdrawing olefin). Extremely different C6F5-C6F5 coupling rates, ranging from totally inactive (producing stable complexes at room temperature) to those inducing almost instantaneous coupling at 25 °C, were found for the different ligands tested. The PR2(biaryl) ligands, very efficient for coupling in Pd, are slow and inefficient in Ni, and the reason for this difference is examined. In contrast, PEWO type ligands are amazingly efficient and provide the lowest coupling barriers ever observed for NiII complexes; they yield up to 96% C6F5-C6F5 coupling in 5 min at 25 °C (the rest is C6F5H) and 100% coupling with no hydrolysis in 8 h at -22 to -53 °C.
Collapse
Affiliation(s)
- Jaime Ponce-de-León
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Estefania Gioria
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Jesús M Martínez-Ilarduya
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| |
Collapse
|
23
|
McCann SD, Reichert EC, Arrechea PL, Buchwald SL. Development of an Aryl Amination Catalyst with Broad Scope Guided by Consideration of Catalyst Stability. J Am Chem Soc 2020; 142:15027-15037. [PMID: 32786769 DOI: 10.1021/jacs.0c06139] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a new dialkylbiaryl monophosphine ligand, GPhos, that supports a palladium catalyst capable of promoting carbon-nitrogen cross-coupling reactions between a variety of primary amines and aryl halides; in many cases, these reactions can be carried out at room temperature. The reaction development was guided by the idea that the productivity of catalysts employing BrettPhos-like ligands is limited by their lack of stability at room temperature. Specifically, it was hypothesized that primary amine and N-heteroaromatic substrates can displace the phosphine ligand, leading to the formation of catalytically dormant palladium complexes that reactivate only upon heating. This notion was supported by the synthesis and kinetic study of a putative off-cycle Pd complex. Consideration of this off-cycle species, together with the identification of substrate classes that are not effectively coupled at room temperature using previous catalysts, led to the design of a new dialkylbiaryl monophosphine ligand. An Ot-Bu substituent was added ortho to the dialkylphosphino group of the ligand framework to improve the stability of the most active catalyst conformer. To offset the increased size of this substituent, we also removed the para i-Pr group of the non-phosphorus-containing ring, which allowed the catalyst to accommodate binding of even very large α-tertiary primary amine nucleophiles. In comparison to previous catalysts, the GPhos-supported catalyst exhibits better reactivity both under ambient conditions and at elevated temperatures. Its use allows for the coupling of a range of amine nucleophiles, including (1) unhindered, (2) five-membered-ring N-heterocycle-containing, and (3) α-tertiary primary amines, each of which previously required a different catalyst to achieve optimal results.
Collapse
Affiliation(s)
- Scott D McCann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elaine C Reichert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pedro Luis Arrechea
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Tian J, Wang G, Qi ZH, Ma J. Ligand Effects of BrettPhos and RuPhos on Rate-Limiting Steps in Buchwald-Hartwig Amination Reaction Due to the Modulation of Steric Hindrance and Electronic Structure. ACS OMEGA 2020; 5:21385-21391. [PMID: 32905323 PMCID: PMC7469115 DOI: 10.1021/acsomega.0c01528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The differences in catalytic activity between two catalyst ligands of Buchwald-Hartwig amination reaction, BrettPhos versus RuPhos, were investigated using density functional theory (DFT) calculations. The reaction process consists of three consecutive steps: (1) oxidative addition, (2) deprotonation, and (3) reductive elimination. Among them, the rate-limiting step of Pd-BrettPhos catalytic system is oxidative addition but that of Pd-RuPhos catalytic system is reductive elimination due to their differences in steric hindrance and electronic structure. It was also revealed that amines with large-size substituents or halides with electron-withdrawing groups would reduce the activation energy barriers of the reactions. The insights gained from the calculations of the Buchwald-Hartwig amination reaction would be helpful for the rational designing of new catalysts and reactions.
Collapse
|
25
|
Li Z, Guo L, Yao H, Di X, Xing K, Tu J, Gu C. Formation and In Vitro Evaluation of a Deep Eutectic Solvent Conversion Film on Biodegradable Magnesium Alloy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33315-33324. [PMID: 32618185 DOI: 10.1021/acsami.0c10992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The chemical conversion films from deep eutectic solvents (DESs) have recently been shown to reduce the corrosion rate of magnesium alloys, which are recognized as a kind of promising materials applied in the human body. However, the biocompatibility of the conversion films has not been investigated. This study proposes an uncommon DES system composed of lithium chloride and urea to fabricate the chemical conversion films on Mg and its alloy. The fabrication process of the conversion film is facile, which is performed by the heat treatment of the substrate in the DES at about 200 °C for 30 min. It is found that the thermal decomposition of the DES can release hydrogen, which diffuses into the Mg substrate to form MgH2-based conversion films. The DES conversion film possesses a porous structure on pure Mg, whereas it becomes dense on the alloy with some cracks. X-ray photoelectron spectroscopy shows that MgCO3 and oxides also exist in the DES conversion films, which depends on the substrate. Electrochemical corrosion test and in vitro biocompatibility tests, including hemolysis, cytotoxicity, antibacterial, and cytoskeleton staining experiments, are performed in a simulated body environment, which shows that the corrosion resistance and biocompatibility of the substrates have been improved significantly. We expect that the DES heat treatment method will be applied to the fabrication of corrosion-resistant and biocompatible surfaces for biodegradable Mg alloys.
Collapse
Affiliation(s)
- Zhongxu Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Liting Guo
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Hui Yao
- Hebei Life Origin Bio-Technology Co, Shijiazhuang 051433, China
| | - Xiaosong Di
- Hebei Life Origin Bio-Technology Co, Shijiazhuang 051433, China
| | - Kai Xing
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Jiangping Tu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| | - Changdong Gu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
| |
Collapse
|
26
|
Estrada JG, Williams WL, Ting SI, Doyle AG. Role of Electron-Deficient Olefin Ligands in a Ni-Catalyzed Aziridine Cross-Coupling To Generate Quaternary Carbons. J Am Chem Soc 2020; 142:8928-8937. [PMID: 32348673 DOI: 10.1021/jacs.0c02237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously reported the development of an electron-deficient olefin (EDO) ligand, Fro-DO, that promotes the generation of quaternary carbon centers via Ni-catalyzed Csp3-Csp3 cross-coupling with aziridines. By contrast, electronically and structurally similar EDO ligands such as dimethyl fumarate and electron-deficient styrenes afford primarily β-hydride elimination side reactivity. Only a few catalyst systems have been identified that promote the formation of quaternary carbons via Ni-catalyzed Csp3-Csp3 cross-coupling. Although Fro-DO represents a promising ligand in this regard, the basis for its superior performance is not well understood. Here we describe a detailed mechanistic study of the aziridine cross-coupling reaction and the role of EDO ligands in facilitating Csp3-Csp3 bond formation. This analysis reveals that cross-coupling proceeds by a Ni0/II cycle with a NiII azametallacyclobutane catalyst resting state. Turnover-limiting C-C reductive elimination occurs from a spectroscopically observable NiII-dialkyl intermediate bound to the EDO. Computational analysis shows that Fro-DO accelerates turnover limiting reductive elimination via LUMO lowering. However, it is no more effective than dimethyl fumarate at reducing the barrier to Csp3-Csp3 reductive elimination. Instead, Fro-DO's unique reactivity arises from its ability to associate favorably to NiII intermediates. Natural bond order second-order perturbation theory analysis of the catalytically relevant NiII intermediate indicates that Fro-DO binds to NiII through an additional stabilizing donor-acceptor interaction between its sulfonyl group and NiII. Design of new ligands to evaluate this proposal supports this model and has led to the development of a new and tunable ligand framework.
Collapse
Affiliation(s)
- Jesús G Estrada
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Wendy L Williams
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephen I Ting
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Whited MT, Taylor BLH. Metal/Organosilicon Complexes: Structure, Reactivity, and Considerations for Catalysis. COMMENT INORG CHEM 2020. [DOI: 10.1080/02603594.2020.1737026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matthew T. Whited
- Department of Chemistry, Carleton College, Northfield, Minnesota, USA
| | - Buck L. H. Taylor
- Department of Chemistry, University of Portland, Portland, Oregon, USA
| |
Collapse
|
28
|
Budiman YP, Jayaraman A, Friedrich A, Kerner F, Radius U, Marder TB. Palladium-Catalyzed Homocoupling of Highly Fluorinated Arylboronates: Studies of the Influence of Strongly vs Weakly Coordinating Solvents on the Reductive Elimination Process. J Am Chem Soc 2020; 142:6036-6050. [PMID: 32134642 DOI: 10.1021/jacs.9b11871] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C-C reductive elimination from [PdL2(C6F5)2] to form polyfluorinated biaryls has been a challenge for over 50 years. Thus, palladium-catalyzed homocoupling of arylboronates (ArF-Bpin) containing two ortho-fluorine substituents is very difficult, as the reaction typically stops at the [PdL2(ArF)2] stage after two transmetalation steps. The transmetalated complexes cis-[Pd(MeCN)2(C6F5)2] (3a), cis-[Pd(MeCN)2(2,4,6-C6F3H2)2] (3b), and cis-[Pd(MeCN)2(2,6-C6F2H3)2] (3e) have been isolated from the reaction of ArF-Bpin with Pd(OAc)2 in acetonitrile solvent, with no homocoupling observed. However, catalytic homocoupling proceeds smoothly in a "weakly coordinating" arene solvent as long as no ancillary ligands or coordinating solvents are present. DFT computations reveal that the active catalyst formed by arene solvent coordination leads to an overall reduced barrier for the reductive elimination step compared to the formation of stable [PdL2(ArF)2] complexes in the presence of a donor ligand or solvent L.
Collapse
Affiliation(s)
- Yudha P Budiman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363 Jatinangor, Indonesia
| | | | | | | | | | | |
Collapse
|
29
|
Tcyrulnikov S, Kozlowski MC. Accounting for Strong Ligand Sensitivity in Pd-Catalyzed α-Arylation of Enolates from Ketones, Esters, and Nitroalkanes. J Org Chem 2020; 85:3465-3472. [PMID: 31994879 DOI: 10.1021/acs.joc.9b03203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of the Pd-catalyzed α-arylation of three model enolates is studied focusing on an analysis of their very different reactivities. In particular, the low reactivity of nitronates under standard arylation conditions and their high sensitivity to the nature of catalytic systems are addressed. The three canonical steps for each of the reaction systems are examined, and key trends surrounding the stability of intermediates and transition states are delineated. A framework based on molecular orbital analyses and the hard-soft acid-base (HSAB) theory is advanced to explain the observed reactivity trends. The local softness of the enolates was found to be a key parameter controlling the energy of the enolate-catalyst complexes. The low reactivity of the nitroalkane enolates is attributed to slow reductive elimination, a consequence of the hard nature of the nitronate. Analysis of reactivity of nitromethane in α-arylation with Pd catalysts containing Buchwald ligands reveals destabilization of the L2Pd species as a major non-enolate-specific acceleration mechanism as well as less electron-rich ligands accelerating reductive elimination as a nitronate-specific mechanism. The corresponding energetics and feasibility that favor C-arylation versus O-arylation are outlined.
Collapse
Affiliation(s)
- Sergei Tcyrulnikov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
30
|
Shahsavari HR, Babadi Aghakhanpour R, Biglari A, Niazi M, Mastrorilli P, Todisco S, Gallo V, Lalinde E, Moreno MT, Giménez N, Halvagar MR. C(sp 2)–C(sp 2) Reductive Elimination from a Diarylplatinum(II) Complex Induced by a S–S Bond Oxidative Addition at Room Temperature. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00771] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Reza Babadi Aghakhanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Abbas Biglari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Maryam Niazi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | | | | | - Vito Gallo
- DICATECh, Politecnico di Bari, I-70125 Bari, Italy
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | | |
Collapse
|
31
|
Nijamudheen A, Datta A. Gold-Catalyzed Cross-Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry 2019; 26:1442-1487. [PMID: 31657487 DOI: 10.1002/chem.201903377] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI /AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.
Collapse
Affiliation(s)
- A Nijamudheen
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India.,Department of Chemical & Biomedical Engineering, Florida A&M University-Florida State University, Joint College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India
| |
Collapse
|
32
|
Takeda N, Oma R, Kogure Y, Sakakibara F, Tanaka Y, Unno M. Synthesis and properties of dimethylpalladium complex with new PS3-type tripodal tetradentate ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Ferguson DM, Bour JR, Canty AJ, Kampf JW, Sanford MS. Aryl–CF3 Coupling from Phosphinoferrocene-Ligated Palladium(II) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00828] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Devin M. Ferguson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - James R. Bour
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allan J. Canty
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
34
|
Kim JH, Mertens RT, Agarwal A, Parkin S, Berger G, Awuah SG. Direct intramolecular carbon(sp 2)-nitrogen(sp 2) reductive elimination from gold(iii). Dalton Trans 2019; 48:6273-6282. [PMID: 30989158 DOI: 10.1039/c8dt05155k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactivity of bidentate AuIII-Cl species, [(C^N)AuCl2], with a bisphosphine or carbon donor ligands results in reductive elimination. Combined experimental and computational investigations lead to the first evidence of a direct intramolecular C(sp2)-N(sp2) bond formation from a monomeric [(C^N)AuCl2] gold(iii) complex. We show that bidentate ligated Au(iii) systems bypass transmetallation to form C(sp2)-N(sp2) species and NHC-Au-Cl. Mechanistic investigations of the reported transformation reveal a ligand-induced reductive elimination via a key AuIII intermediate. Kinetic studies of the reaction support a second-order rate process.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Zhang X, Zhao Q, Fan JQ, Chen DZ, Liu JB. A computational mechanistic study of Ni(0)-catalyzed annulation of aromatic amides with alkynes: the effects of directing groups. Org Chem Front 2019. [DOI: 10.1039/c8qo01310a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanism of Ni(0)-catalyzed annulation of aromatic amides with alkynes was studied theoretically to investigate the effects of directing groups.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Qi Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jia-Qi Fan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - De-Zhan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jian-Biao Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
36
|
Pan F, Boursalian GB, Ritter T. Palladium‐Catalyzed Decarbonylative Difluoromethylation of Acid Chlorides at Room Temperature. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811139] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fei Pan
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Gregory B. Boursalian
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
37
|
Pan F, Boursalian GB, Ritter T. Palladium‐Catalyzed Decarbonylative Difluoromethylation of Acid Chlorides at Room Temperature. Angew Chem Int Ed Engl 2018; 57:16871-16876. [DOI: 10.1002/anie.201811139] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Pan
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Gregory B. Boursalian
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
38
|
Liu S, Kang K, Liu S, Wang D, Wei P, Lan Y, Shen Q. The Difluoromethylated Organogold(III) Complex cis-[Au(PCy3)(4-F-C6H4)(CF2H)(Cl)]: Preparation, Characterization, and Its C(sp2)–CF2H Reductive Elimination. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuanshuan Liu
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Kai Kang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Shihan Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Decai Wang
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Ping Wei
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
39
|
Parchomyk T, Koszinowski K. Electronic and Steric Effects on the Reductive Elimination of Anionic Arylferrate(III) Complexes. Chemistry 2018; 24:16342-16347. [PMID: 29969518 DOI: 10.1002/chem.201801003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/11/2022]
Abstract
Arylferrate(III) complexes Ph3 FeR- (R=para- and ortho-substituted aryl) are proposed as model systems for the in-depth investigation of reductive eliminations from organoiron(III) species. Electrospray ionization transfers the arylferrate complexes prepared in situ from solution into the gas phase, where mass selection ensures a well-defined population of reactant ions. Upon gas-phase fragmentation, the arylferrate complexes undergo reductive elimination of the cross-coupling product PhR as well as the homo-coupling product Ph2 . The measured branching ratios between the two competing reaction channels are used to construct a Hammett plot, which shows that electron-donating aryl groups R favor the formation of the cross-coupling product. In this way, the complexes avoid the build-up of too much electron density at the iron center during the reductive elimination. ortho Substitution in R increases the fraction of the homo-coupling product, presumably by hindering the approach between the two aryl groups participating in the reductive elimination. The obtained mechanistic insight substantially advances our understanding of one of the central elementary steps of transition-metal-catalyzed cross-coupling reactions.
Collapse
Affiliation(s)
- Tobias Parchomyk
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
40
|
Rudenko AE, Clayman NE, Walker KL, Maclaren JK, Zimmerman PM, Waymouth RM. Ligand-Induced Reductive Elimination of Ethane from Azopyridine Palladium Dimethyl Complexes. J Am Chem Soc 2018; 140:11408-11415. [PMID: 30160962 DOI: 10.1021/jacs.8b06398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reductive elimination (RE) is a critical step in many catalytic processes. The reductive elimination of unsaturated groups (aryl, vinyl and ethynyl) from Pd(II) species is considerably faster than RE of saturated alkyl groups. Pd(II) dimethyl complexes ligated by chelating diimine ligands are stable toward RE unless subjected to a thermal or redox stimulus. Herein, we report the spontaneous RE of ethane from (azpy)PdMe2 complexes and the unique role of the redox-active azopyridine (azpy) ligands in facilitating this reaction. The (azpy)PdMe2 complexes are air- and moisture-stable in the solid form, but they readily produce ethane upon dissolution in polar solvents at temperatures from 10 °C to room temperature without the need for an external oxidant or elevated temperatures. Experimental and computational studies indicate that a bimolecular methyl transfer precedes the reductive elimination step, where both steps are facilitated by the redox-active azopyridine ligand.
Collapse
Affiliation(s)
- Andrey E Rudenko
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Naomi E Clayman
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Katherine L Walker
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| | - Jana K Maclaren
- Stanford Nano Shared Facilities , Stanford University , 476 Lomita Mall , Stanford , California 94305 , United States
| | - Paul M Zimmerman
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Robert M Waymouth
- Department of Chemistry , Stanford University , Stanford , California 94305-5080 , United States
| |
Collapse
|
41
|
Liu XJ, Tian YY, Cui HQ, Fan HJ. The influence of NHCs on C-Si and C-C reductive elimination: a computational study of the selectivity of Ni-catalyzed C-H activation of arenes with vinylsilanes. Chem Commun (Camb) 2018; 54:7912-7915. [PMID: 29951689 DOI: 10.1039/c8cc04456b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the mechanism and origins of the NHC-controlled selectivity of Ni-catalyzed C-H activation of arenes with vinylsilanes. The key to the selectivity is the different impacts of NHCs on the C-Si/C-C reductive elimination of the square-planar/T-shaped intermediate.
Collapse
Affiliation(s)
- Xiao-Jun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | |
Collapse
|
42
|
Kang K, Liu S, Xu T, Wang D, Leng X, Bai R, Lan Y, Shen Q. C(sp2)–C(sp2) Reductive Elimination from Well-Defined Diarylgold(III) Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00588] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kai Kang
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Shuanshuan Liu
- Biotechnology
and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Ting Xu
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Decai Wang
- Biotechnology
and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province 210009, People’s Republic of China
| | - Xuebing Leng
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Ruopeng Bai
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Yu Lan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Qilong Shen
- Key
Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic
Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
43
|
Ferguson DM, Bour JR, Canty AJ, Kampf JW, Sanford MS. Stoichiometric and Catalytic Aryl–Perfluoroalkyl Coupling at Tri-tert-butylphosphine Palladium(II) Complexes. J Am Chem Soc 2017; 139:11662-11665. [DOI: 10.1021/jacs.7b05216] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Devin M. Ferguson
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - James R. Bour
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allan J. Canty
- School
of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jeff W. Kampf
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department
of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
44
|
Shaw PA, Clarkson GJ, Rourke JP. Reversible C-C bond formation at a triply cyclometallated platinum(iv) centre. Chem Sci 2017; 8:5547-5558. [PMID: 28970934 PMCID: PMC5618794 DOI: 10.1039/c7sc01361b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022] Open
Abstract
The oxidation of the tribenzylphosphine derivative of the doubly cylcometallated platinum(ii) complex of diphenylpyridine, 1, with PhICl2 led, as a first step, to the formation of a highly electrophilic metal centre which attacked the benzyl phosphine to give a triply cyclometallated species as the arenium ion. The highly acidic arenium ion protonated unreacted starting 1, a reaction that could be supressed by the addition of water, and gave the neutral species 2(t). Octahedral complex 2(t) was induced to reductively couple, with two five-membered rings coupling to give square planar complex 5 containing a nine-membered ring. The crystal structure of 5 showed the nine-membered ring to span trans across the square planar metal accompanied by considerable distortion: the P-Pt-N bond angle is 155.48(5)°. Oxidation of 5 with PhICl2 resulted in the addition of two chlorides and a change of the nine-membered ring ligand coordination to cis at an octahedral centre, still with considerable distortions: the P-Pt-N bond angle in the crystal structure of 6 is 99.46(5)°. Treatment of 2(t) with AgBF4 also induced a coupling to give a nine-membered ring, and the fluxional three coordinate complex 7. A mono-methylated version of 1, Me-1, was prepared and similar reactions were observed. The presence of the methyl group allowed us to observe selectivity in the coupling reaction to give the nine-membered ring, with two products (a-Me-7 and b-Me7) being initially formed in the ratio 7 : 1. The concentrations of two products changed with time giving a final ratio of 1 : 8 at room temperature (half-life 48 hours), the equilibration being made possible by a reversible C-C bond forming reaction. Reaction of complexes 7 with CO or hydrogen left the nine-membered ring intact, though oxidative degradation resulted in decomplexation of the phosphine donor, accompanied by formation of a P[double bond, length as m-dash]O group.
Collapse
Affiliation(s)
- Paul A Shaw
- Department of Chemistry , Warwick University , Coventry , UK CV4 7AL .
| | - Guy J Clarkson
- Department of Chemistry , Warwick University , Coventry , UK CV4 7AL .
| | - Jonathan P Rourke
- Department of Chemistry , Warwick University , Coventry , UK CV4 7AL .
| |
Collapse
|
45
|
Tang S, Eisenstein O, Nakao Y, Sakaki S. Aromatic C–H σ-Bond Activation by Ni0, Pd0, and Pt0 Alkene Complexes: Concerted Oxidative Addition to Metal vs Ligand-to-Ligand H Transfer Mechanism. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00256] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuwei Tang
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho
34-4, Sakyo-ku, Kyoto 606-8103, Japan
- Institute
of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Odile Eisenstein
- Institute
Charles Gerhardt, UMR 5253 CNRS-UM-ENSCM, Université de Montpellier, cc1501, 34095 Montpellier, France
| | - Yoshiaki Nakao
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shigeyoshi Sakaki
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho
34-4, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
46
|
Yu KH, Huang SL, Liu YH, Wang Y, Liu ST, Cheng YC, Lin YF, Chen JT. Kinetics, Mechanism and Theoretical Studies of Norbornene-Ethylene Alternating Copolymerization Catalyzed by Organopalladium(II) Complexes Bearing Hemilabile α-Amino-pyridine. Molecules 2017; 22:E1095. [PMID: 28665348 PMCID: PMC6152412 DOI: 10.3390/molecules22071095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/27/2017] [Indexed: 11/24/2022] Open
Abstract
Cationic methylpalladium complexes bearing hemilabile bidentate α-amino-pyridines can serve as effective precursors for catalytic alternating copolymerization of norbornene (N) and ethylene (E), under mild conditions. The norbornyl palladium complexes in the formula of {[RHNCH₂(o-C₆H₄N)]Pd(C₇H10Me)(NCMe)}(BF₄) (R = iPr (2a), tBu (2b), Ph (2c), 2,6-Me₂C₆H₃ (2d), 2,6-iPr₂C₆H₃ (2e)) were synthesized via single insertion of norbornene into the corresponding methylpalladium complexes 1a-1e, respectively. Both square planar methyl and norbornyl palladium complexes exhibit facile equilibria of geometrical isomerization, via sterically-controlled amino decoordination-recoordination of amino-pyridine. Kinetic studies of E-insertion, N-insertion of complexes 1 and 2, and the geometric isomerization reactions have been examined by means of VT-NMR, and found in excellent agreement with the results estimated by DFT calculations. The more facile N-insertion in the cis-isomers, and ready geometric isomerization, cooperatively lead to a new mechanism that accounts for the novel catalytic formation of alternating COC.
Collapse
Affiliation(s)
- Kuo-Hsuan Yu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Shiuh-Tzung Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yuan-Chung Cheng
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Ya-Fan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Jwu-Ting Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
47
|
Shaw PA, Rourke JP. Selective C-C coupling at a Pt(iv) centre: 100% preference for sp 2-sp 3 over sp 3-sp 3. Dalton Trans 2017; 46:4768-4776. [PMID: 28345086 DOI: 10.1039/c7dt00328e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative addition of three different organic halides RX to the non-symmetric platinum(ii) mer coordinated dicyclometallated C^N^C complex 1 yielded short-lived six-coordinate platinum(iv) complexes 2(R) (R = Me, allyl, Bn), with the incoming groups trans across the platinum centre. A spontaneous reductive coupling reaction then occurred with, in each case, a completely chemoselective sp2-sp3 coupling, and exclusively gave R-3, with the newly introduced R group bonded to the previously cyclometallated aryl ring. Following a recyclometallation reaction, the oxidative addition/reductive elimination cycle was repeated and gave the same selectivity. A one-pot route to doubly alkylating the aryl ring was developed. The observed selectivity might have been predicted on the normal basis of a steric barrier associated with non-flat sp3 hybridised groups, but we suggest that it arises from the stereochemistry at the metal, and the orientation of the ligands.
Collapse
Affiliation(s)
- Paul A Shaw
- Department of Chemistry, Warwick University, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
48
|
Thomas AA, Wang H, Zahrt AF, Denmark SE. Structural, Kinetic, and Computational Characterization of the Elusive Arylpalladium(II)boronate Complexes in the Suzuki-Miyaura Reaction. J Am Chem Soc 2017; 139:3805-3821. [PMID: 28266847 PMCID: PMC7784246 DOI: 10.1021/jacs.6b13384] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The existence of the oft-invoked intermediates containing the crucial Pd-O-B subunit, the "missing link", has been established in the Suzuki-Miyaura cross-coupling reaction. The use of low-temperature, rapid injection NMR spectroscopy (RI-NMR), kinetic studies, and computational analysis has enabled the generation, observation, and characterization of these highly elusive species. The ability to confirm the intermediacy of Pd-O-B-containing species provided the opportunity to clarify mechanistic aspects of the transfer of the organic moiety from boron to palladium in the key transmetalation step. Specifically, these studies establish the identity of two different intermediates containing Pd-O-B linkages, a tri-coordinate (6-B-3) boronic acid complex and a tetra-coordinate (8-B-4) boronate complex, both of which undergo transmetalation leading to the cross-coupling product. Two distinct mechanistic pathways have been elucidated for stoichiometric reactions of these complexes: (1) transmetalation via an unactivated 6-B-3 intermediate that dominates in the presence of an excess of ligand, and (2) transmetalation via an activated 8-B-4 intermediate that takes place with a deficiency of ligand.
Collapse
Affiliation(s)
- Andy A. Thomas
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hao Wang
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Andrew F. Zahrt
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E. Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Bhattacharjee R, Nijamudheen A, Datta A. Direct and Autocatalytic Reductive Elimination from Gold Complexes ([(Ph3P)Au(Ar)(CF3)(X)], X=F, Cl, Br, I): The Key Role of Halide Ligands. Chemistry 2017; 23:4169-4179. [PMID: 28084031 DOI: 10.1002/chem.201605784] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Rameswar Bhattacharjee
- Department of Spectroscopy; Indian Association for the Cultivation of Science; Jadavpur 700032 West Bengal India
| | - A. Nijamudheen
- Department of Spectroscopy; Indian Association for the Cultivation of Science; Jadavpur 700032 West Bengal India
- Department of Chemistry; University at Buffalo, The State University of New York; Buffalo NY 14260-3000 USA
| | - Ayan Datta
- Department of Spectroscopy; Indian Association for the Cultivation of Science; Jadavpur 700032 West Bengal India
| |
Collapse
|
50
|
Werlé C, Dohm S, Bailly C, Karmazin L, Ricard L, Sieffert N, Pfeffer M, Hansen A, Grimme S, Djukic JP. trans–cis C–Pd–C rearrangement in hemichelates. Dalton Trans 2017; 46:8125-8137. [DOI: 10.1039/c7dt00872d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the transition state of the trans–cis isomerization process, hemichelation dynamically offers alternative coordination positions to the Pd center.
Collapse
|