1
|
Cao M, Wang H, Ma Y, Tung CH, Liu L. Site- and Enantioselective Manganese-Catalyzed Benzylic C-H Azidation of Indolines. J Am Chem Soc 2022; 144:15383-15390. [PMID: 35951549 DOI: 10.1021/jacs.2c07089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A manganese-catalyzed highly site- and enantioselective benzylic C-H azidation of indolines has been described. The practical method is applicable for azidation of a tertiary benzylic C-H bond with good functional group tolerance, allowing facile access to structurally diverse tertiary azide-containing indolines in high efficiency with excellent site-, chemo-, and enantioselectivity. The generality of the method was further demonstrated by site- and enantioselective azidation of the secondary benzylic C-H bond for a range of secondary azide-containing indolines. The benzylic C-H azidation method allows to straightforwardly and enantioselectively install a variety of nitrogen-based functional groups and diverse bioactive molecules at the C3 position of indoline frameworks through post-azidation manipulations. Gram-scale synthesis was also demonstrated, further highlighting the synthetic potential of the method. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity.
Collapse
Affiliation(s)
- Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hongliang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yingang Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Ortuzar N, Karu K, Presa D, Morais GR, Sheldrake HM, Shnyder SD, Barnieh FM, Loadman PM, Patterson LH, Pors K, Searcey M. Probing cytochrome P450 (CYP) bioactivation with chloromethylindoline bioprecursors derived from the duocarmycin family of compounds. Bioorg Med Chem 2021; 40:116167. [PMID: 33932713 DOI: 10.1016/j.bmc.2021.116167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
The duocarmycins belong to a class of agent which has great potential for use in cancer therapy. Their exquisite potency means they are too toxic for systemic use, and targeted approaches are required to unlock their clinical potential. In this study, we have explored seco-OH-chloromethylindoline (CI) duocarmycin-based bioprecursors for their potential for cytochrome P450 (CYP)-mediated cancer cell kill. We report on synthetic and biological explorations of racemic seco-CI-MI, where MI is a 5-methoxy indole motif, and dehydroxylated analogues. We show up to a 10-fold bioactivation of de-OH CI-MI and a fluoro bioprecursor analogue in CYP1A1-transfected cells. Using CYP bactosomes, we also demonstrate that CYP1A2 but not CYP1B1 or CYP3A4 has propensity for potentiating these compounds, indicating preference for CYP1A bioactivation.
Collapse
Affiliation(s)
- Natalia Ortuzar
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Kersti Karu
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Daniela Presa
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Goreti R Morais
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Helen M Sheldrake
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Steve D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Francis M Barnieh
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, BD7 1DP, UK.
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
3
|
Liu J, Ma S. Aerobic oxidation of indole carbinols using Fe(NO3)3·9H2O/TEMPO/NaCl as catalysts. Org Biomol Chem 2013; 11:4186-93. [PMID: 23677005 DOI: 10.1039/c3ob40226f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical aerobic oxidation of indole carbinols using Fe(NO3)3·9H2O/TEMPO/NaCl in DCE at room temperature and atmospheric pressure of oxygen affording aldehydes or ketones in good to excellent yields was developed. Furthermore, when using the industrially favored solvent toluene instead of DCE and air instead of pure oxygen, this protocol also works smoothly, demonstrating its high potential for possible industrial application.
Collapse
Affiliation(s)
- Jinxian Liu
- Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Lu, Shanghai 200062, PR China
| | | |
Collapse
|