1
|
Nye DB, Lecomte JTJ. Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin. Biochemistry 2018; 57:5785-5796. [PMID: 30213188 PMCID: PMC6217817 DOI: 10.1021/acs.biochem.8b00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme ligation in hemoglobin is typically assumed by the "proximal" histidine. Hydrophobic contacts, ionic interactions, and the ligation bond secure the heme between two α-helices denoted E and F. Across the hemoglobin superfamily, several proteins also use a "distal" histidine, making the native state a bis-histidine complex. The group 1 truncated hemoglobin from Synechocystis sp. PCC 6803, GlbN, is one such bis-histidine protein. Ferric GlbN, in which the distal histidine (His46 or E10) has been replaced with a leucine, though expected to bind a water molecule and yield a high-spin iron complex at neutral pH, has low-spin spectral properties. Here, we applied nuclear magnetic resonance and electronic absorption spectroscopic methods to GlbN modified with heme and amino acid replacements to identify the distal ligand in H46L GlbN. We found that His117, a residue located in the C-terminal portion of the protein and on the proximal side of the heme, is responsible for the formation of an alternative bis-histidine complex. Simultaneous coordination by His70 and His117 situates the heme in a binding site different from the canonical site. This new holoprotein form is achieved with only local conformational changes. Heme affinity in the alternative site is weaker than in the normal site, likely because of strained coordination and a reduced number of specific heme-protein interactions. The observation of an unconventional heme binding site has important implications for the interpretation of mutagenesis results and globin homology modeling.
Collapse
Affiliation(s)
- Dillon B. Nye
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Juliette T. J. Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| |
Collapse
|
2
|
Kanai Y, Harada A, Shibata T, Nishimura R, Namiki K, Watanabe M, Nakamura S, Yumoto F, Senda T, Suzuki A, Neya S, Yamamoto Y. Characterization of Heme Orientational Disorder in a Myoglobin Reconstituted with a Trifluoromethyl-Group-Substituted Heme Cofactor. Biochemistry 2017; 56:4500-4508. [DOI: 10.1021/acs.biochem.7b00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Kanai
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ayaka Harada
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tomokazu Shibata
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Ryu Nishimura
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Kosuke Namiki
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Miho Watanabe
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Shunpei Nakamura
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | - Fumiaki Yumoto
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural
Biology Research Center, Institute of Materials Structure Science, KEK/High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Akihiro Suzuki
- Department
of Materials Engineering, National Institute of Technology, Nagaoka College, Nagaoka 940-8532, Japan
| | - Saburo Neya
- Department
of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chuoh-Inohana, Chiba 260-8675, Japan
| | - Yasuhiko Yamamoto
- Department
of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
- Life
Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
Nishimura R, Shibata T, Tai H, Ishigami I, Yanagisawa S, Ogura T, Neya S, Suzuki A, Yamamoto Y. Effect of the Electron Density of the Heme Fe Atom on the Fe–Histidine Coordination Bond in Deoxy Myoglobin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Hulin Tai
- Department of Chemistry, University of Tsukuba
| | - Izumi Ishigami
- Picobiology Institute, Graduate School of Life Science, University of Hyogo
| | - Sachiko Yanagisawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo
| | - Saburo Neya
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Akihiro Suzuki
- Department of Materials Engineering, Nagaoka National College of Technology
| | | |
Collapse
|
4
|
Field-dependent 19F NMR study of sperm whale myoglobin reconstituted with a ring-fluorinated heme. Polym J 2012. [DOI: 10.1038/pj.2012.60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Shibata T, Nagao S, Fukaya M, Tai H, Nagatomo S, Morihashi K, Matsuo T, Hirota S, Suzuki A, Imai K, Yamamoto Y. Effect of heme modification on oxygen affinity of myoglobin and equilibrium of the acid-alkaline transition in metmyoglobin. J Am Chem Soc 2010; 132:6091-8. [PMID: 20392104 DOI: 10.1021/ja909891q] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional regulation of myoglobin (Mb) is thought to be achieved through the heme environment furnished by nearby amino acid residues, and subtle tuning of the intrinsic heme Fe reactivity. We have performed substitution of strongly electron-withdrawing perfluoromethyl (CF(3)) group(s) as heme side chain(s) of Mb to obtain large alterations of the heme electronic structure in order to elucidate the relationship between the O(2) affinity of Mb and the electronic properties of heme peripheral side chains. We have utilized the equilibrium constant (pK(a)) of the "acid-alkaline transition" in metmyoglobin in order to quantitatively assess the effects of the CF(3) substitutions for the electron density of heme Fe atom (rho(Fe)) of the protein. The pK(a) value of the protein was found to decrease by approximately 1 pH unit upon the introduction of one CF(3) group, and the decrease in the pK(a) value with decreasing the rho(Fe) value was confirmed by density functional theory calculations on some model compounds. The O(2) affinity of Mb was found to correlate well with the pK(a) value in such a manner that the P(50) value, which is the partial pressure of O(2) required to achieve 50% oxygenation, increases by a factor of 2.7 with a decrease of 1 pK(a) unit. Kinetic studies on the proteins revealed that the decrease in O(2) affinity upon the introduction of an electron-withdrawing CF(3) group is due to an increase in the O(2) dissociation rate. Since the introduction of a CF(3) group substitution is thought to prevent further Fe(2+)-O(2) bond polarization and hence formation of a putative Fe(3+)-O(2)(-)-like species of the oxy form of the protein [Maxwell, J. C.; Volpe, J. A.; Barlow, C. H.; Caughey, W. S. Biochem. Biophys. Res. Commun. 1974, 58, 166-171], the O(2) dissociation is expected to be enhanced by the substitution of electron-withdrawing groups as heme side chains. We also found that, in sharp contrast to the case of the O(2) binding to the protein, the CO association and dissociation rates are essentially independent of the rho(Fe) value. As a result, the introduction of electron-withdrawing group(s) enhances the preferential binding of CO to the protein over that of O(2). These findings not only resolve the long-standing issue of the mechanism underlying the subtle tuning of the intrinsic heme Fe reactivity, but also provide new insights into the structure-function relationship of the protein.
Collapse
Affiliation(s)
- Tomokazu Shibata
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shibata T, Nagao S, Tai H, Nagatomo S, Hamada H, Yoshikawa H, Suzuki A, Yamamoto Y. Characterization of the acid–alkaline transition in the individual subunits of human adult and foetal methaemoglobins. J Biochem 2010; 148:217-29. [DOI: 10.1093/jb/mvq055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Nagao S, Hirai Y, Kawano S, Imai K, Suzuki A, Yamamoto Y. Heme orientational disorder in human adult hemoglobin reconstituted with a ring fluorinated heme and its functional consequences. Biochem Biophys Res Commun 2007; 354:681-5. [PMID: 17258177 DOI: 10.1016/j.bbrc.2007.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 01/04/2007] [Indexed: 11/22/2022]
Abstract
A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethyl-porphyrinatoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using (19)F NMR and the O(2) binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in alpha- and beta- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O(2) affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O(2) affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O(2) affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A.
Collapse
Affiliation(s)
- Satoshi Nagao
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Simonneaux G, Bondon A. Mechanism of Electron Transfer in Heme Proteins and Models: The NMR Approach. Chem Rev 2005; 105:2627-46. [PMID: 15941224 DOI: 10.1021/cr030731s] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gérard Simonneaux
- Laboratoire de Chimie Organométallique et Biologique, UMR CNRS 6509, Institut de Chimie, Université de Rennes 1, France.
| | | |
Collapse
|
9
|
Nagao S, Hirai Y, Suzuki A, Yamamoto Y. 19F NMR Characterization of the Thermodynamics and Dynamics of the Acid−Alkaline Transition in a Reconstituted Sperm Whale Metmyoglobin. J Am Chem Soc 2005; 127:4146-7. [PMID: 15783177 DOI: 10.1021/ja043975i] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 19F NMR study on the acid-alkaline transition in sperm whale myoglobin reconstituted with a perfluoromethyl heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-trifluoromethylporphyrinatoiron(III), demonstrated that the thermodynamics of the transition is predominantly controlled by the stability of acidic form.
Collapse
Affiliation(s)
- Satoshi Nagao
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8571, Japan
| | | | | | | |
Collapse
|
10
|
Yamamoto Y, Nagao S, Hirai Y, Inose T, Terui N, Mita H, Suzuki A. NMR investigation of the heme electronic structure in deoxymyoglobin possessing a fluorinated heme. J Biol Inorg Chem 2003; 9:152-60. [PMID: 14685828 DOI: 10.1007/s00775-003-0508-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 10/14/2003] [Indexed: 10/26/2022]
Abstract
The heme electronic structures of deoxymyoglobins (deoxy-Mbs) reconstituted with 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2,12,18-trimethyl-7-(trifluoromethyl)porphyrinatoiron(III) (7-PF), 13,17-bis(2-carboxylatoethyl)-3,7-difluoro-2,8,12,18-tetramethylporphyrinatoiron(III) (3,7-DF), and 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethylporphyrinatoiron(III) (2-MF) have been characterized by (1)H and (19)F NMR. The analysis of heme methyl proton shift patterns of the hemes in their bis-cyano forms demonstrated that, owing to the substitution of a strongly electron-withdrawing perfluoromethyl group, CF(3), to porphyrin, the porphyrin pi-system of 7-PF is more significantly distorted from four-fold symmetry than those of the ring-fluorinated hemes, 3,7-DF and 2-MF. The presence of the heme orientation disorder resulted in the observation of the two well-resolved (19)F signals in the spectra of deoxy-Mbs possessing 7-PF and 2-MF. The (19)F signals of deoxy-Mb possessing 7-PF exhibited a relatively large difference in paramagnetic shift (approximately 30 ppm), despite their small paramagnetic shifts (approximately 30 ppm), supporting the significant contribution of a pi spin delocalization mechanism in this Mb due to the d-electron configuration derived from the (5)E ground state. On the other hand, (19)F signals of deoxy-Mbs with 3,7-DF as well as 2-MF exhibited large paramagnetic shifts (approximately 250 ppm) with a relatively small difference in the paramagnetic shift (approximately 20 ppm), indicating the predominant contribution of spin delocalization, due to a d-electron configuration derived from the (5)B(2) ground state. These results demonstrate for the first time that the relative contributions of the orbital ground states derived from (5)E and (5)B(2) states to the heme electronic structure in deoxy-Mb are affected by the distortion of the porphyrin pi-system exerted by chemical properties of the heme peripheral side-chains.
Collapse
Affiliation(s)
- Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, 305-8571 Tsukuba, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Yamamoto Y, Takemoto K, Matsuo H. 1H NMR study of the effect of heme insertion on the folding of apomyoglobin. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(01)00715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|