1
|
Kitoka K, Skrabana R, Gasparik N, Hritz J, Jaudzems K. NMR Studies of Tau Protein in Tauopathies. Front Mol Biosci 2021; 8:761227. [PMID: 34859051 PMCID: PMC8632555 DOI: 10.3389/fmolb.2021.761227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tauopathies, including Alzheimer's disease (AD), are the most troublesome of all age-related chronic conditions, as there are no well-established disease-modifying therapies for their prevention and treatment. Spatio-temporal distribution of tau protein pathology correlates with cognitive decline and severity of the disease, therefore, tau protein has become an appealing target for therapy. Current knowledge of the pathological effects and significance of specific species in the tau aggregation pathway is incomplete although more and more structural and mechanistic insights are being gained using biophysical techniques. Here, we review the application of NMR to structural studies of various tau forms that appear in its aggregation process, focusing on results obtained from solid-state NMR. Furthermore, we discuss implications from these studies and their prospective contribution to the development of new tauopathy therapies.
Collapse
Affiliation(s)
- Kristine Kitoka
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Norbert Gasparik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristaps Jaudzems
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
2
|
Cieplak AS. Tau Inclusions in Alzheimer's, Chronic Traumatic Encephalopathy and Pick's Disease. A Speculation on How Differences in Backbone Polarization Underlie Divergent Pathways of Tau Aggregation. Front Neurosci 2019; 13:488. [PMID: 31156372 PMCID: PMC6530265 DOI: 10.3389/fnins.2019.00488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Tau-related dementias appear to involve specific to each disease aggregation pathways and morphologies of filamentous tau assemblies. To understand etiology of these differences, here we elucidate molecular mechanism of formation of tau PHFs based on the PMO theory of misfolding and aggregation of pleiomorphic proteins associated with neurodegenerative diseases. In this model, fibrillization of tau is initiated by the coupled binding and folding of the MTB domains that yields antiparallel homodimers, in analogy to folding of split inteins. The free energy of binding is minimized when the antiparallel alignment brings about backbone-backbone H-bonding between the MTBD segments of similar "strand" propensities. To assess these propensities, a function of the NMR shielding tensors of the Cα atoms is introduced as the folding potential function FP i ; the Cα tensors are obtained by the quantum mechanical modeling of protein secondary structure (GIAO//B3LYP/D95**). The calculated FP i plots show that the "strand" propensities of the MBTD segments, and hence the homodimer's register, can be affected by the relatively small changes in the environment's pH, as a result of protonation of MBTD's conserved histidines. The assembly of the antiparallel tau dimers into granular aggregates and their subsequent conversion into the parallel cross-β structure of paired helical filaments is expected to follow the same path as the previously described fibrillization of Aβ. Consequently, the core structure of the nascent tau fibril is determined by the register of the tau homodimer. This model accounts for the reported differences in (i) fibril-core structure of in vivo and in vitro filaments, (ii) cross-seeding of isoforms, (iii) effects of reducing/non-reducing conditions, (iv) effects of PHF6 mutations, and (v) homologs' aggregation properties. The proposed model also suggests that in contrast to Alzheimer's and chronic traumatic encephalopathy disease, the assembly of tau prions in Pick's disease would be facilitated by a moderate drop in pH that accompanies e.g., transit in the endosomal system, inflammation response or an ischemic injury.
Collapse
Affiliation(s)
- Andrzej Stanisław Cieplak
- Department of Chemistry, Bilkent University, Ankara, Turkey
- Department of Chemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Brandeis University, Waltham, MA, United States
| |
Collapse
|
3
|
Ishida T. [Overview of structural study on conformations and intermolecular interactions of biomolecules]. YAKUGAKU ZASSHI 2012; 132:785-816. [PMID: 22790026 DOI: 10.1248/yakushi.132.785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Information on the conformational feature and specific intermolecular interaction of biomolecules is important to understand the biological function and to develop device for treating disorder caused by the abnormal function. Thus the 3D structures of the biologically active molecules and the specific interactions with their target molecules at the atomic level have been investigated by various physicochemical approaches. Herein, the following five subjects are reviewed: (1) function-linked conformations of biomolecules including natural annular products, opioid peptides and neuropeptides; (2) π-π stacking interactions of tryptophan derivatives with coenzymes and nucleic acid bases; (3) mRNA cap recognition of eukaryotic initiation factor 4E and its regulation by 4E-binding protein; (4) conformational feature of histamine H2 receptor antagonists and design of cathepsin B inhibitors; (5) self-aggregation mechanism of tau protein and its inhibition.
Collapse
Affiliation(s)
- Toshimasa Ishida
- Laboratory of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan.
| |
Collapse
|
4
|
Sogawa K, Okuda R, In Y, Ishida T, Taniguchi T, Minoura K, Tomoo K. C-H ... π interplay between Ile308 and Tyr310 residues in the third repeat of microtubule binding domain is indispensable for self-assembly of three- and four-repeat tau. J Biochem 2012; 152:221-9. [PMID: 22659094 DOI: 10.1093/jb/mvs061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Information on the structural scaffold for tau aggregation is important in developing a method of preventing Alzheimer's disease (AD). Tau contains a microtubule binding domain (MBD) consisting of three or four repeats of 31 and 32 similar residues in its C-terminal half. Although the key event in tau aggregation has been considered to be the formation of β-sheet structures from a short hexapeptide (306)VQIVYK(311) in the third repeat of MBD, its aggregation pathway to filament formation differs between the three- and four-repeated MBDs, owing to the intermolecular and intramolecular disulphide bond formations, respectively. Therefore, the elucidation of a common structural element necessary for the self-assembly of three-/four-repeated full-length tau is an important research subject. Expanding the previous results on the aggregation mechanism of MBD, in this paper, we report that the C-H … π interaction between the Ile308 and Tyr310 side chains in the third repeat of MBD is indispensable for the self-assembly of three-/four-repeated full-length tau, where the interaction provides a conformational seed for triggering the molecular association. On the basis of the aggregation behaviours of a series of MBD and full-length tau mutants, a possible self-association model of tau is proposed and the relationship between the aggregation form (filament or granule) and the association pathway is discussed.
Collapse
Affiliation(s)
- Koushirou Sogawa
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-11, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Han LJ, Shi S, Zheng LF, Yang DJ, Yao TM, Ji LN. Flavonoids Inhibit Heparin-Induced Aggregation of the Third Repeat (R3) of Microtubule-Binding Domain of Alzheimer’s Tau Protein. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20090254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Ishida T. Structural studies of specific intermolecular interactions and self-aggregation of biomolecules and their application to drug design. Chem Pharm Bull (Tokyo) 2010; 57:1309-34. [PMID: 19952439 DOI: 10.1248/cpb.57.1309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Information on the structural basis of intermolecular recognition or self-aggregation of biomolecules at the atomic level is important to understand biological functions and to develop devices for treating disorders caused by abnormal functions. Thus structural analysis of specific intermolecular or intramolecular interactions of biomolecules has been performed using various physicochemical approaches. Herein, the following three subjects are reviewed: (1) structural analyses of mRNA cap structure recognition by eukaryotic initiation factor 4E and its functional regulation by endogenous 4E-binding protein; (2) structural studies of self-aggregation mechanism of microtubule-binding domain in tau protein and aggregation inhibitor; and (3) molecular design of cathepsin B-specific inhibitor.
Collapse
Affiliation(s)
- Toshimasa Ishida
- Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Japan.
| |
Collapse
|
7
|
Nishiura C, Takeuchi K, Minoura K, Sumida M, Taniguchi T, Tomoo K, Ishida T. Importance of Tyr310 residue in the third repeat of microtubule binding domain for filament formation of tau protein. ACTA ACUST UNITED AC 2009; 147:405-14. [DOI: 10.1093/jb/mvp181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
8
|
Water structure around dipeptides in aqueous solutions. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:647-55. [DOI: 10.1007/s00249-008-0292-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 02/07/2008] [Accepted: 02/11/2008] [Indexed: 11/30/2022]
|
9
|
Okuyama K, Nishiura C, Mizushima F, Minoura K, Sumida M, Taniguchi T, Tomoo K, Ishida T. Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein. FEBS J 2008; 275:1529-1539. [PMID: 18312411 DOI: 10.1111/j.1742-4658.2008.06312.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism for the tau protein, it is still unclear how it is transformed from a normal structure in a neuron. To examine the linkage-dependent contribution of each repeat peptide (R1-R4) to filament formation of the three- or four-repeat microtubule-binding domain (MBD) in the tau protein, four two-repeat peptides (R12, R13, R23 and R34) and two three-repeat peptides (R123 and R234) were prepared, and their in vitro self-aggregation was investigated by thioflavin S fluorescence and circular dichroism measurements, and by electron microscopy in neutral buffer (pH 7.6). Comparison of these aggregation behaviors with previous results for single-repeat peptides and wild-type 3RMBD (R134) and 4RMBD (R1234) indicated that (a) the two-repeat R23, not the R2 or R3 single repeat, forms the core structure in self-aggregation of 4RMBD, whereas that of 3RMBD comprises the R3 single repeat, (b) co-existence of R1 and R4 repeats is necessary for the aggregation behavior inherent in 3RMBD and 4RMBD, whereas the R1 or R4 repeat alone functions as a repressor or modifier of the filament formation, (c) 4RMBD aggregation is accompanied by R1-driven transition from random and alpha-helix structures to a beta-sheet structure, whereas 3RMBD aggregation involves three-repeat R134-specific transition from a random structure to an alpha-helix structure without the participation of a beta-sheet structure, and (d) the peptides that include the R1 repeat form a long filament irrespective of the absence or presence of the R4 repeat, whereas those that include the R4 repeat, but not the R1 repeat, form a relatively short filament. To the best of our knowledge, a systematic study of the linkage-dependent contribution of each repeat peptide to the paired helical filament formation of tau MBD has not been carried out previously, and thus the present information is useful for understanding the essence of the filament formation of tau MBD.
Collapse
Affiliation(s)
- Kayoko Okuyama
- Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Chisato Nishiura
- Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Fumie Mizushima
- Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Katsuhiko Minoura
- Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Miho Sumida
- Behavioral and Medical Sciences Research Consortium, Akashi, Hyogo, Japan
| | - Taizo Taniguchi
- Behavioral and Medical Sciences Research Consortium, Akashi, Hyogo, Japan
| | - Koji Tomoo
- Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| | - Toshimasa Ishida
- Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan
| |
Collapse
|
10
|
Tomoo K, Yao TM, Minoura K, Hiraoka S, Sumida M, Taniguchi T, Ishida T. Possible Role of Each Repeat Structure of the Microtubule-Binding Domain of the Tau Protein in In Vitro Aggregation. ACTA ACUST UNITED AC 2005; 138:413-23. [PMID: 16272135 DOI: 10.1093/jb/mvi142] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although one of the priorities in Alzheimer's research is to clarify the filament formation mechanism of the tau protein, it is currently unclear how it is transformed from a normal structure in a neuron. To examine which part and what structural change in the tau protein are involved in its transformation into a pathological entity, the initial in vitro self-aggregation features of each repeat peptide (R1-R4) constituting a three- or four-repeat microtubule-binding domain (3RMBD or 4RMBD) in the tau protein was investigated by measuring both the fluorescence and light scattering (LS) spectra on the same instrument, because these MBD domains constitute the core moiety of the tau paired helical filament (PHF) structure. The conformational features of the R1 and R4 peptides in trifluoroethanol were also investigated by (1)H-NMR and molecular modeling analyses and compared with those of the R2 and R3 peptides. The analyses of the LS spectra clarified (i) the self-aggregation rates of R1-R4, 3RMBD and 4RMBD at a fixed concentration (15 mM), (ii) their minimum concentrations for starting filament extension, and (iii) the concentration dependence of their self-aggregations. The fluorescence analyses showed that the R2 and R3 peptides have high self-aggregation abilities at the extension and nucleation steps, respectively, in their filament formation processes. It was shown that the R2 repeat exhibits a positive synergistic effect on the aggregation of 4RMBD. The R1 and R4 repeats, despite their weak self-aggregation abilities, are necessary for the intact PHF formation of tau MBD, whereas they exerted a negative effect on the R3-driven aggregation of 3RMBD. The conformational analyses showed the importance of the amphipathic conformational features of the R1 to R4 peptides, and the intermolecular disulfide bonding abilities of the R2 and R3 peptides for the PHF formation. On the basis of the present spectral and conformational results, the possible role of each repeat structure in the dimeric formation of MBD at the initial in vitro aggregation stage is discussed.
Collapse
Affiliation(s)
- Koji Tomoo
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Tokimasa M, Minoura K, Hiraoka S, Tomoo K, Sumida M, Taniguchi T, Ishida T. Importance of local structures of second and third repeat fragments of microtubule-binding domain for tau filament formation. FEBS Lett 2005; 579:3481-6. [PMID: 15963990 DOI: 10.1016/j.febslet.2005.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/29/2005] [Accepted: 05/04/2005] [Indexed: 11/28/2022]
Abstract
To investigate the importance of the seventh residue of the second and third repeat fragments (R2 and R3 peptides) of the microtubule-binding domain (MBD) for tau filamentous assembly, the residues Lys and Pro were substituted (R2-K7P and R3-P7K). The filament formations of the R2 and R3 peptides were almost lost due to their substitutions despite their overall conformational similarities. The NOE analyses showed the importance of the conformational flexibility for the R2 peptide and the coupled extended and helical conformations for the R3 peptide in their limited N-terminal regions around their seventh residues. The result shows that the filament formation of MBD is initiated from a short fragment region containing the minimal conformational or functional motif.
Collapse
Affiliation(s)
- Mari Tokimasa
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Minoura K, Mizushima F, Tokimasa M, Hiraoka S, Tomoo K, Sumida M, Taniguchi T, Ishida T. Structural evaluation of conformational transition state responsible for self-assembly of tau microtubule-binding domain. Biochem Biophys Res Commun 2005; 327:1100-4. [PMID: 15652510 DOI: 10.1016/j.bbrc.2004.12.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Indexed: 11/17/2022]
Abstract
In the brains of Alzheimer's disease patients, the tau protein abnormally aggregates to form an insoluble paired helical filament (PHF). Since the third repeat structure (R3) of the tau microtubule-binding domain plays an essential role in PHF formation and self-aggregates most significantly in an aqueous solution of 20-40% trifluoroethanol (TFE), its possible conformation was estimated from the combination of (i) the TFE-dependent deviations of NH and CalphaH proton chemical shifts from those of the random structure in water and (ii) the TFE-dependent NOE effect connectivity diagrams between the neighboring protons. Consequently, it was indicated that the extended structure of the N-terminal VQIVYK moiety and the alpha-helical-like structure of the LSKVTSKC region provide a structural scaffold for initiating the self-assembled filament formation of the R3 structure. To the best of our knowledge, this is the first study that demonstrated the initial structural moiety and its structural feature necessary for starting the tau PHF formation.
Collapse
Affiliation(s)
- Katsuhiko Minoura
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q. Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech 2005; 67:141-55. [PMID: 16103995 DOI: 10.1002/jemt.20187] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease is characterized in part by the aggregation of tau protein into filamentous inclusions. Because tau filaments form in brain regions associated with memory retention, and because their appearance correlates well with the degree of dementia, they have emerged as robust markers of disease progression. Yet the discovery that mutations in tau protein can lead directly to filament and tangle formation in humans, and that filament formation is linked to neurodegeneration in model biological systems, suggests that tau aggregation may also contribute directly to degeneration in affected neurons. In this context, the mechanism of tau filament formation and its modulation by mutation and posttranslational modification is of fundamental importance. Here, recent progress on the molecular mechanisms underlying tau aggregation deduced from in vivo and in vitro experimentation is reviewed and a model rationalizing the effect of posttranslational and other structural modifications on assembly kinetics and thermodynamics is presented. We hypothesize that tau aggregation can be described as a heterogeneous nucleation reaction, where exogenous effectors, tau gene mutations, or other modifications that stabilize assembly-competent conformations of tau act to trigger the fibrillization reaction. In contrast, those that modulate postnuclear equilibria can enhance fibrillization by increasing the free energy difference between polymers and unincorporated monomers, resulting in stabilization of filaments at low bulk protein concentrations.
Collapse
Affiliation(s)
- Jeff Kuret
- Department of Molecular and Cellular Biochemistry and Center for Molecular Neurobiology, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Hiraoka S, Yao TM, Minoura K, Tomoo K, Sumida M, Taniguchi T, Ishida T. Conformational transition state is responsible for assembly of microtubule-binding domain of tau protein. Biochem Biophys Res Commun 2004; 315:659-63. [PMID: 14975751 DOI: 10.1016/j.bbrc.2004.01.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Indexed: 10/26/2022]
Abstract
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to clarify the mechanism of PHF formation. Although several reports on the regulation of tau assembly have been published, it is not yet clear whether in vivo PHFs are composed of beta-structures or alpha-helices. Since the four-repeat microtubule-binding domain (4RMBD) of the tau protein has been considered to play an essential role in PHF formation, its heparin-induced assembly propensity was investigated by the thioflavin fluorescence method to clarify what conformation is most preferred for the assembly. We analyzed the assembly propensity of 4RMBD in Tris-HCl buffer with different trifluoroethanol (TFE) contents, because TFE reversibly induces the transition of the random structure to the alpha-helical structure in an aqueous solution. Consequently, it was observed that the 4RMBD assembly is most significantly favored to proceed in the 10-30% TFE solution, the concentration of which corresponds to the activated transition state of 4RMBD from a random structure to an alpha-helical structure, as determined from the circular dichroism (CD) spectral changes. Since such an assembly does not occur in a buffer containing TFE of < 10% or > 40%, the intermediate conformation between the random and alpha-helical structures could be most responsible for the PHF formation of 4RMBD. This is the first report to clarify that the non-native alpha-helical intermediate in transition from random coil is directly associated with filament formation at the start of PHF formation.
Collapse
Affiliation(s)
- Shuko Hiraoka
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Minoura K, Yao TM, Tomoo K, Sumida M, Sasaki M, Taniguchi T, Ishida T. Different associational and conformational behaviors between the second and third repeat fragments in the tau microtubule-binding domain. ACTA ACUST UNITED AC 2004; 271:545-52. [PMID: 14728681 DOI: 10.1046/j.1432-1033.2003.03956.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The third repeat fragment (R3) in the four-repeat microtubule-binding domain of the water-soluble tau protein has been considered to play an essential role in the protein's filamentous assembly. To clarify the associational and conformational features that differentiate R3 from the second repeat, R2, the heparin-induced assembly profiles of these peptide fragments were monitored by the thioflavin fluorescence method and electron microscopy. The trifluoroethanol-induced reversible conformational change from a random structure to an alpha-helical structure, in an aqueous solution, was monitored by CD measurement, and the structure of R2 in trifluoroethanol solution was analyzed by a combination of two-dimensional 1H-NMR measurements and molecular modeling calculations to facilitate comparison with the structure of R3. The speed of R3 assembly was remarkably faster than that of R2, in spite of their similar amino acid sequences. The averaged NMR conformers of R2 exhibited the whole-spanning alpha-helical structure. Similar features observed in R2 and R3 conformers in trifluoroethanol were that the Leu10-Leu20/Lys20 sequence takes a helical structure with the amphipathic-like distribution of the respective side-chains, whereas the C-terminal moieties are both flexible. In contrast, a notable difference was observed at the N-terminal Val1-Lys6 sequence, namely, a helical conformation for R2 and an extended conformation for R3. These conformational behaviors would be associated with the different self-aggregation speeds and seeding reactions between R2 and R3.
Collapse
Affiliation(s)
- Katsuhiko Minoura
- Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|