Valdez CA, Tripp JC, Miyamoto Y, Kalisiak J, Hruz P, Andersen YS, Brown SE, Kangas K, Arzu LV, Davids BJ, Gillin FD, Upcroft JA, Upcroft P, Fokin VV, Smith DK, Sharpless KB, Eckmann L. Synthesis and electrochemistry of 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole and antimicrobial activity against Giardia lamblia.
J Med Chem 2009;
52:4038-53. [PMID:
19480409 DOI:
10.1021/jm900356n]
[Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infections with the diarrheagenic pathogen, Giardia lamblia, are commonly treated with the 5-nitroimidazole (5-NI) metronidazole (Mz), and yet treatment failures and Mz resistance occur. Using a panel of new 2-ethenyl and 2-ethanyl 5-NI derivatives, we found that compounds with a saturated bridge between the 5-NI core and a pendant ring system exhibited only modestly increased antigiardial activity and could not overcome Mz resistance. By contrast, olefins with a conjugated bridge connecting the core and a substituted phenyl or heterocyclic ring showed greatly increased antigiardial activity without toxicity, and several overcame Mz resistance and were more effective than Mz in a murine giardiasis model. Determination of the half-wave potential of the initial one-electron transfer by cyclic voltammetry revealed that easier redox activation correlated with greater antigiardial activity and capacity to overcome Mz resistance. These studies show the potential of combining systematic synthetic approaches with biological and electrochemical evaluations in developing improved 5-NI drugs.
Collapse