1
|
Singh A, Maity A, Singh N. Structure and Dynamics of dsDNA in Cell-like Environments. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1587. [PMID: 36359677 PMCID: PMC9689892 DOI: 10.3390/e24111587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
Deoxyribonucleic acid (DNA) is a fundamental biomolecule for correct cellular functioning and regulation of biological processes. DNA's structure is dynamic and has the ability to adopt a variety of structural conformations in addition to its most widely known double-stranded DNA (dsDNA) helix structure. Stability and structural dynamics of dsDNA play an important role in molecular biology. In vivo, DNA molecules are folded in a tightly confined space, such as a cell chamber or a channel, and are highly dense in solution; their conformational properties are restricted, which affects their thermodynamics and mechanical properties. There are also many technical medical purposes for which DNA is placed in a confined space, such as gene therapy, DNA encapsulation, DNA mapping, etc. Physiological conditions and the nature of confined spaces have a significant influence on the opening or denaturation of DNA base pairs. In this review, we summarize the progress of research on the stability and dynamics of dsDNA in cell-like environments and discuss current challenges and future directions. We include studies on various thermal and mechanical properties of dsDNA in ionic solutions, molecular crowded environments, and confined spaces. By providing a better understanding of melting and unzipping of dsDNA in different environments, this review provides valuable guidelines for predicting DNA thermodynamic quantities and for designing DNA/RNA nanostructures.
Collapse
|
2
|
Pandey S, Jonchhe S, Mishra S, Emura T, Sugiyama H, Endo M, Mao H. Zeptoliter DNA Origami Reactor to Reveal Cosolute Effects on Nanoconfined G-Quadruplexes. J Phys Chem Lett 2022; 13:8692-8698. [PMID: 36094396 PMCID: PMC10323737 DOI: 10.1021/acs.jpclett.2c02253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellular environments such as nanoconfinement and molecular crowding can change biomolecular properties. However, in nanoconfinement, it is extremely challenging to investigate effects of crowding cosolutes on macromolecules. By using optical tweezers, here, we elucidated the effects of hexaethylene glycol (HEG) on the mechanical stability of a telomeric G-quadruplex (GQ) in a zeptoliter DNA origami reactor (zepto-reactor). When HEG molecules were introduced in the GQ-containing zepto-reactor at different positions, we found that the GQ species split into two equilibrated populations, reflecting diverse effects of the oligoethylene glycol on the GQ via either a long-range dehydration effect or direct interactions. When the number of HEG molecules was increased, the stability of the GQ unexpectedly decreased, suggesting that the direct destabilizing interaction between the GQ and HEG is dominating over the long-range stabilizing dehydration effects of the HEG in hydrophilic nanocavities. These findings indicate that a nanoconfined environment can alter regular effects of cosolutes on biomacromolecules.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Sagun Jonchhe
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Shubham Mishra
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masayuki Endo
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell–Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
- Organization for Research and Development of Innovative Science and Technology, Kansai University, Suita, Osaka 564-8680, Japan1
| | - Hanbin Mao
- Department of Chemistry & Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Matsumoto S, Tateishi-Karimata H, Ohyama T, Sugimoto N. Effect of DNA modifications on the transition between canonical and non-canonical DNA structures in CpG islands during senescence. RSC Adv 2021; 11:37205-37217. [PMID: 35496393 PMCID: PMC9043837 DOI: 10.1039/d1ra07201c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Patterns and levels of DNA modifications play important roles in senescence. Two major epigenetic modifications of DNA, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), target CpG sites. Importantly, CpG concentrated regions, known as CpG islands, contain GC-rich sequences, which have the potential to fold into non-canonical DNA structures such as i-motifs and G-quadruplexes. In this study, we investigated the effect of 5mC and 5hmC modifications on the transition between a duplex, and i-motif and G-quadruplexes. To examine the transition, we firstly investigated the stability and structure of the i-motif and G-quadruplexes, considering the molecular environment in senescent cells. Analyses of their stability showed that the modifications did not drastically affect the stability. However, noteworthily, the modification can weaken the (de)stabilisation effect on G-quadruplexes caused by cosolute(s) and cations. Circular dichroism analyses indicated that the surrounding environments, including the molecular crowding and the type of cations such as K+ and Na+, regulate the topology of G-quadruplexes, while neither 5mC nor 5hmC had a drastic effect. On the other hand, the modifications changed the transition between duplexes and quadruplexes. Unmodified DNA preferred to fold into quadruplexes, whereas DNA with 5mC and 5hmC preferred to fold into duplexes in the absence of PEG200; on the other hand, DNA with or without modifications tended to fold into i-motifs under crowded conditions. Furthermore, an investigation of quadruplexes forming sequences in CpG islands, which are hyper- or hypomethylated during senescence, followed by gene ontology enrichment analysis for each gene group classified by the presence of quadruplexes, showed a difference in function between genes with and without quadruplexes in the CpG region. These results indicate that it is important to consider the effects of patterns and levels of DNA modifications on the transition between canonical and non-canonical DNA structures to understand gene regulation by epigenetic modification during senescence. The modification of DNA can regulate the transition between a duplex and quadruplexes during senescence responding to surrounding environments.![]()
Collapse
Affiliation(s)
- Saki Matsumoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Tatsuya Ohyama
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi Kobe 650-0047 Japan
| |
Collapse
|
4
|
Sugimoto N, Endoh T, Takahashi S, Tateishi-Karimata H. Chemical Biology of Double Helical and Non-Double Helical Nucleic Acids: “To B or Not To B, That Is the Question”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Tamaki Endoh
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 17-1-20 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Scott S, Shaheen C, McGuinness B, Metera K, Kouzine F, Levens D, Benham CJ, Leslie S. Single-molecule visualization of the effects of ionic strength and crowding on structure-mediated interactions in supercoiled DNA molecules. Nucleic Acids Res 2019; 47:6360-6368. [PMID: 31106378 PMCID: PMC6614806 DOI: 10.1093/nar/gkz408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
DNA unwinding is an important cellular process involved in DNA replication, transcription and repair. In cells, molecular crowding caused by the presence of organelles, proteins, and other molecules affects numerous internal cellular structures. Here, we visualize plasmid DNA unwinding and binding dynamics to an oligonucleotide probe as functions of ionic strength, crowding agent concentration, and crowding agent species using single-molecule CLiC microscopy. We demonstrate increased probe–plasmid interaction over time with increasing concentration of 8 kDa polyethylene glycol (PEG), a crowding agent. We show decreased probe–plasmid interactions as ionic strength is increased without crowding. However, when crowding is introduced via 10% 8 kDa PEG, interactions between plasmids and oligos are enhanced. This is beyond what is expected for normal in vitro conditions, and may be a critically important, but as of yet unknown, factor in DNA’s proper biological function in vivo. Our results show that crowding has a strong effect on the initial concentration of unwound plasmids. In the dilute conditions used in these experiments, crowding does not impact probe–plasmid interactions once the site is unwound.
Collapse
Affiliation(s)
- Shane Scott
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Cynthia Shaheen
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Brendon McGuinness
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Kimberly Metera
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| | - Fedor Kouzine
- Center for Cancer Research, National Cancer Institute, Bethesda, MS 20892, USA
| | - David Levens
- Center for Cancer Research, National Cancer Institute, Bethesda, MS 20892, USA
| | - Craig J Benham
- Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Sabrina Leslie
- Department of Physics, McGill University, Montreal, Quebec, Canada H3A 2T8
| |
Collapse
|
6
|
Singh A, Singh N. DNA melting in the presence of molecular crowders. Phys Chem Chem Phys 2017; 19:19452-19460. [DOI: 10.1039/c7cp03624h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the opening of double stranded DNA (dsDNA) in the presence of molecular crowders using the Peyrard–Bishop–Dauxois (PBD) model.
Collapse
Affiliation(s)
- Amar Singh
- Department of Physics
- BITS Pilani
- Pilani Campus
- India
| | - Navin Singh
- Department of Physics
- BITS Pilani
- Pilani Campus
- India
| |
Collapse
|
7
|
The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys Rev 2016; 8:11-23. [PMID: 28510143 DOI: 10.1007/s12551-015-0188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Organic solvents and apolar media are used in the studies of nucleic acids to modify the conformation and function of nucleic acids, to improve solubility of hydrophobic ligands, to construct molecular scaffolds for organic synthesis, and to study molecular crowding effects. Understanding how organic solvents affect nucleic acid interactions and identifying the factors that dominate solvent effects are important for the creation of oligonucleotide-based technologies. This review describes the structural and catalytic properties of DNA and RNA oligonucleotides in organic solutions and in aqueous solutions with organic cosolvents. There are several possible mechanisms underlying the effects of organic solvents on nucleic acid interactions. The reported results emphasize the significance of the osmotic pressure effect and the dielectric constant effect in addition to specific interactions with nucleic acid strands. This review will serve as a guide for the selection of solvent systems based on the purpose of the nucleic acid-based experiments.
Collapse
|
8
|
Wildes A, Khadeeva L, Trewby W, Valle-Orero J, Studer A, Garden JL, Peyrard M. Melting of Highly Oriented Fiber DNA Subjected to Osmotic Pressure. J Phys Chem B 2015; 119:4441-9. [DOI: 10.1021/acs.jpcb.5b01343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew Wildes
- Institut Laue-Langevin, CS 20156,
71 Avenue des Martyrs, 38042 Grenoble, France
| | - Liya Khadeeva
- Institut Laue-Langevin, CS 20156,
71 Avenue des Martyrs, 38042 Grenoble, France
- Institut de Physique de Rennes, UMR UR1 - CNRS 6251, 35042 Rennes Cedex, France
| | - William Trewby
- Institut Laue-Langevin, CS 20156,
71 Avenue des Martyrs, 38042 Grenoble, France
- Department
of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jessica Valle-Orero
- Institut Laue-Langevin, CS 20156,
71 Avenue des Martyrs, 38042 Grenoble, France
| | - Andrew Studer
- ANSTO, Locked Bag 2001, Kirrawee
DC, NSW 2232, Australia
| | - Jean-Luc Garden
- CNRS, Institut
NÉEL, F-38042 Grenoble, France
- Université Grenoble Alpes, Inst NEEL, F-3800 Grenoble, France
| | - Michel Peyrard
- Laboratoire
de Physique, Ecole Normale Supérieure de Lyon, 46 Allée
d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
9
|
Tateishi-Karimata H, Pramanik S, Nakano SI, Miyoshi D, Sugimoto N. Dangling ends perturb the stability of RNA duplexes responsive to surrounding conditions. ChemMedChem 2014; 9:2150-5. [PMID: 25070089 DOI: 10.1002/cmdc.201402167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Indexed: 11/09/2022]
Abstract
Unpaired terminal nucleotides (dangling ends) occur in various biologically important RNA structures. We studied the thermal stability of RNA duplexes with dangling ends under conditions that mimic those in cells. Dangling ends of one or two nucleotides stabilized a duplex up to approximately 2.7 kcal mol(-1) in the absence of cosolutes. RNA duplexes with dangling purine nucleotides were more stable than those with pyrimidine nucleotides. Interestingly, in the presence of various cosolutes, RNA duplexes with purine dangling ends were significantly destabilized, although those with pyrimidine dangling ends were destabilized slightly. For example, in 30 wt % poly(ethylene glycol), stabilization resulting from adenine dangling ends was reduced by 1.4 kcal mol(-1) . Our quantitative analyses also showed that the number of water molecules bound to the dangling ends in an aqueous solution was independent of the nucleotide type but dependent on the stability of the dangling-end region. It has been considered that dangling ends stabilize helices; however, our results suggest that the stabilization is responsive to the surrounding conditions.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 (Japan) http://www.konan-fiber.jp/
| | | | | | | | | |
Collapse
|
10
|
Nakano SI, Kitagawa Y, Miyoshi D, Sugimoto N. Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds. FEBS Open Bio 2014; 4:643-50. [PMID: 25161873 PMCID: PMC4141205 DOI: 10.1016/j.fob.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/13/2014] [Accepted: 06/27/2014] [Indexed: 12/23/2022] Open
Abstract
Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Yuichi Kitagawa
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan ; Department of Chemistry, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Daisuke Miyoshi
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan ; Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| |
Collapse
|
11
|
Nakano SI, Miyoshi D, Sugimoto N. Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem Rev 2013; 114:2733-58. [PMID: 24364729 DOI: 10.1021/cr400113m] [Citation(s) in RCA: 375] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shu-ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) and Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
12
|
Tateishi-Karimta H, Sugimoto N. Control of stability and structure of nucleic acids using cosolutes. Methods 2013; 67:151-8. [PMID: 24270066 DOI: 10.1016/j.ymeth.2013.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 12/25/2022] Open
Abstract
The stabilities, structures, and functions of nucleic acids are responsive to surrounding conditions. Living cells contain biomolecules, including nucleic acids, proteins, polysaccharides, and other soluble and insoluble low-molecular weight components, that occupy a significant fraction of the cellular volume (up to 40%), resulting in a highly crowded intracellular environment. We have proven that conditions that mimic features of this intra-cellular environment alter the physical properties affect the stability, structure, and function of nucleic acids. The ability to control structure of nucleic acids by mimicking intra-cellular conditions will be useful in nanotechnology applications of nucleic acids. This paper describes methods that can be used to analyze quantitatively the intra-cellular environment effects caused by cosolutes on nucleic acid structures and to regulate properties of nucleic acids using cosolutes.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimta
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan; Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan.
| |
Collapse
|
13
|
Tateishi-Karimata H, Nakano SI, Sugimoto N. Quantitative analyses of nucleic Acid stability under the molecular crowding condition induced by cosolutes. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2013; Chapter 7:7.19.1-7.19.17. [PMID: 23775810 DOI: 10.1002/0471142700.nc0719s53] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A variety of biomolecules, including nucleic acids, proteins, polysaccharides, and other soluble and insoluble low-molecular weight components, are present in living cells. These molecules occupy a significant fraction of the cellular volume (up to 40%), resulting in a highly crowded intracellular environment. This situation is referred to as molecular crowding. Although the thermodynamic stabilities of DNA structures are known to be altered in a crowded environment, less is known about the behavior of nucleic acids and their interactions with cations and water molecules under such conditions. This unit describes methods that can be used to quantitatively analyze the molecular crowding effects caused by cosolutes on the thermodynamic stability, hydration, and cation binding of nucleic acid structures.
Collapse
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan
| | - Shu-Ichi Nakano
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan.,Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, Kobe, Japan.,Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Japan
| |
Collapse
|
14
|
Khimji I, Shin J, Liu J. DNA duplex stabilization in crowded polyanion solutions. Chem Commun (Camb) 2013; 49:1306-8. [DOI: 10.1039/c2cc38627e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zaki A, Dave N, Liu J. Amplifying the Macromolecular Crowding Effect Using Nanoparticles. J Am Chem Soc 2011; 134:35-8. [DOI: 10.1021/ja207661z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmed Zaki
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada
| | - Neeshma Dave
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada
| | - Juewen Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada
| |
Collapse
|
16
|
Tateishi-Karimata H, Sugimoto N. A-T base pairs are more stable than G-C base pairs in a hydrated ionic liquid. Angew Chem Int Ed Engl 2011; 51:1416-9. [PMID: 22170851 DOI: 10.1002/anie.201106423] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/22/2011] [Indexed: 12/13/2022]
Affiliation(s)
- Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | |
Collapse
|
17
|
Tateishi-Karimata H, Sugimoto N. A-T Base Pairs are More Stable Than G-C Base Pairs in a Hydrated Ionic Liquid. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Pramanik S, Nagatoishi S, Saxena S, Bhattacharyya J, Sugimoto N. Conformational flexibility influences degree of hydration of nucleic acid hybrids. J Phys Chem B 2011; 115:13862-72. [PMID: 21992117 DOI: 10.1021/jp207856p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Four nucleic acid duplexes-DNA/RNA hybrid, RNA/DNA hybrid, RNA duplex, and DNA duplex-were studied under molecular crowding conditions of osmolytes. Destabilization of duplexes (ΔΔG°(25)) indicated that the ΔΔG°(25) values of hybrids were intermediate between those of DNA and RNA duplexes. In the presence of polyethylene glycol 200, the ΔΔG°(25) values were estimated to be +3.0, +3.5, +3.5, and +4.1 kcal mol(-1) for the DNA duplex, DNA/RNA hybrid, RNA/DNA hybrid, and RNA duplex, respectively. Differences in the number of water molecules taken up (-Δn(w)) upon duplex formations between 0 and 37 °C (Δ(-Δn(w))) were estimated to be 44.8 and 59.7 per duplex structure for the DNA/RNA and RNA/DNA hybrids, respectively. While the Δ(-Δn(w)) value for the DNA/RNA hybrid was intermediate between those of the DNA (26.1) and RNA (59.2) duplexes, the value for RNA/DNA hybrid was close to that of RNA duplex. These differences in the thermodynamic parameters and hydration are probably a consequence of the enhanced global flexibility of the RNA/DNA hybrid structure relative to the DNA/RNA hybrid structure observed in molecular dynamics simulations. This molecular crowding study provides information not only on hydration but also on the flexibility of the conformation of nucleic acid duplexes.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
19
|
Markarian MZ, Schlenoff JB. Effect of molecular crowding and ionic strength on the isothermal hybridization of oligonucleotides. J Phys Chem B 2010; 114:10620-7. [PMID: 20701389 DOI: 10.1021/jp103213w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The isothermal hybridization of complementary oligonucleotides, 15-mer, 25-mer, 35-mer, and a molecular beacon, was investigated under varying conditions of molecular crowding and ionic strength, using hypochromicity to follow strand pairing and polyethylene glycol as a crowding agent. Thermodynamic analysis of the results revealed the addition of counterions to the oligonucleotide backbones, DeltaPsi, to be dependent on the strand GC content and the molecular crowding. A decrease in DeltaPsi was observed, with both increasing GC% and solution PEG content. In contrast, the number of bound water molecules depended on the activity of Na(+), where two regimes were observed. At a(Na(+)) < 0.05 and increasing molecular crowding, water molecules were released into the DNA solutions, and oligonucleotide pairing was favored with both increasing hydrophobic forces, whereas at a(Na(+)) >or= 0.05, water molecules were bound to the strands, and the extent of double strand formation decreased with increasing PEG wt %.
Collapse
Affiliation(s)
- Marie Z Markarian
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, USA
| | | |
Collapse
|
20
|
Nakano SI, Karimata HT, Kitagawa Y, Sugimoto N. Facilitation of RNA Enzyme Activity in the Molecular Crowding Media of Cosolutes. J Am Chem Soc 2009; 131:16881-8. [DOI: 10.1021/ja9066628] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shu-ichi Nakano
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Frontier Institute for Biomolecular Engineering Research (FIBER), and Department of Chemistry, Faculty of Science and Engineering, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Hisae Tateishi Karimata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Frontier Institute for Biomolecular Engineering Research (FIBER), and Department of Chemistry, Faculty of Science and Engineering, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Yuichi Kitagawa
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Frontier Institute for Biomolecular Engineering Research (FIBER), and Department of Chemistry, Faculty of Science and Engineering, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Naoki Sugimoto
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Frontier Institute for Biomolecular Engineering Research (FIBER), and Department of Chemistry, Faculty of Science and Engineering, Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
21
|
Sugimoto N. Designable DNA Functions toward New Nanobiotechnology. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Yu HQ, Zhang DH, Gu XB, Miyoshi D, Sugimoto N. Regulation of telomerase activity by the thermodynamic stability of a DNA x RNA hybrid. Angew Chem Int Ed Engl 2008; 47:9034-8. [PMID: 18850626 DOI: 10.1002/anie.200803577] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hai-Qing Yu
- Frontier Institute for Biomolecular Engineering Research, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe 658-8501, Japan
| | | | | | | | | |
Collapse
|
23
|
Yu HQ, Zhang DH, Gu XB, Miyoshi D, Sugimoto N. Regulation of Telomerase Activity by the Thermodynamic Stability of a DNA⋅RNA Hybrid. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Nakano SI, Wu L, Oka H, Karimata HT, Kirihata T, Sato Y, Fujii S, Sakai H, Kuwahara M, Kuwahara M, Sawai H, Sugimoto N. Conformation and the sodium ion condensation on DNA and RNA structures in the presence of a neutral cosolute as a mimic of the intracellular media. MOLECULAR BIOSYSTEMS 2008; 4:579-88. [PMID: 18493656 DOI: 10.1039/b718806d] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Water-soluble neutral cosolutes can be used to quantify biomolecular properties in the particular molecular environment occurring in a cell. We studied the conformation and the thermal stability of DNA and RNA structures in the presence of PEG [poly(ethylene glycol)] and smaller cosolutes of glycerol, ethylene glycol, 1,3-propanediol, 2-methoxyethanol, and 1,2-dimethoxyethane. Although the neutral cosolutes destabilized the oligonucleotide duplex and the hairpin structures, the left-handed Z-form duplex was more energetically favored in the cosolute-containing solutions. These observations were due to the contribution of water molecule on the nucleotide structure formations because the cosolutes act as an osmolyte to reduce the water activity of a solution. Moreover, the sodium ion condensation for the duplex and the hairpin formations was reduced in the presence of PEG, while that for the transition from the B-form to the Z-form was unaltered. The CD (circular dichroism) and EPR (electron paramagnetic resonance) spectra demonstrated that the cosolutes changed the helical conformation of the unstructured oligonucleotides, but not those of the ordered structures. The results of the favorable formation of the noncanonical nucleotide structures, and minimized conformational and thermal perturbations of the ordered nucleotide structures in the cosolute-containing solutions implicate the significance of the intracellular environment on DNA and RNA structures in a cell.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 8-9-1 Okamoto, Higashinada-Ku, Kobe 658-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|