1
|
Coutinho ND, Sanches-Neto FO, Carvalho-Silva VH, de Oliveira HCB, Ribeiro LA, Aquilanti V. Kinetics of the OH+HCl→H 2 O+Cl reaction: Rate determining roles of stereodynamics and roaming and of quantum tunneling. J Comput Chem 2018; 39:2508-2516. [PMID: 30365178 DOI: 10.1002/jcc.25597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023]
Abstract
The OH + HCl → H2 O + Cl reaction is one of the most studied four-body systems, extensively investigated by both experimental and theoretical approaches. Here, as a continuation of our previous work on the OH + HBr and OH + HI reactions, which manifest an anti-Arrhenius behavior that was explained by stereodynamic and roaming effects, we extend the strategy to understand the transition to the sub-Arrhenius behavior occurring for the HCl case. As previously, we perform first-principles on-the-fly Born-Oppenheimer molecular dynamics calculations, thermalized at four temperatures (50, 200, 350, and 500 K), but this time we also apply a high-level transition-state-theory, modified to account for tunneling conditions. We find that the theoretical rate constants calculated with Bell tunneling corrections are in good agreement with extensive experimental data available for this reaction in the ample temperature range: (i) simulations show that the roles of molecular orientation in promoting this reaction and of roaming in finding the favorable path are minor than in the HBr and HI cases, and (ii) dominating is the effect of quantum mechanical penetration through the energy barrier along the reaction path on the potential energy surface. The discussion of these results provides clarification of the origin on different non-Arrhenius mechanisms observed along this series of reactions. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nayara D Coutinho
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil
| | - Flavio O Sanches-Neto
- Grupo de Química Teórica e Estrutural de Anápolis, Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, CP 459, 75001-970, Anápolis, GO, Brazil
| | | | - Heibbe C B de Oliveira
- Instituto de Química, Universidade de Brasília, Caixa Postal 4478, 70904-970, Brasília, Brazil
| | - Luiz A Ribeiro
- Institute of Physics, University of Brasilia, Brasilia, 70910-900, Brazil
| | - Vincenzo Aquilanti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.,Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Area dela Ricerca di Roma Tor Vergata, Via del Fosso del Cavaliere, 00133, Rome, Italy
| |
Collapse
|
2
|
Kasai T, Che DC, Tsai PY, Nakamura M, Muthiah B, Lin KC. Roaming and chaotic behaviors in collisional and photo-initiated molecular-beam reactions: a role of classical vs. quantum nonadiabatic dynamics. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0709-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Mallick S, Sarkar S, Bandyopadhyay B, Kumar P. Effect of Ammonia and Formic Acid on the OH• + HCl Reaction in the Troposphere: Competition between Single and Double Hydrogen Atom Transfer Pathways. J Phys Chem A 2017; 122:350-363. [DOI: 10.1021/acs.jpca.7b09889] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Pradeep Kumar
- Department of Chemistry, MNIT Jaipur, Jaipur 302017, India
| |
Collapse
|
4
|
Kasai T, Che DC, Okada M, Tsai PY, Lin KC, Palazzetti F, Aquilanti V. Directions of chemical change: experimental characterization of the stereodynamics of photodissociation and reactive processes. Phys Chem Chem Phys 2014; 16:9776-90. [DOI: 10.1039/c4cp00464g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Tsai PY, Che DC, Nakamura M, Lin KC, Kasai T. Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. Phys Chem Chem Phys 2010; 12:2532-4. [DOI: 10.1039/b923934k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Che DC, Matsuo T, Yano Y, Bonnet L, Kasai T. Negative collision energy dependence of Br formation in the OH + HBr reaction. Phys Chem Chem Phys 2007; 10:1419-23. [PMID: 18309398 DOI: 10.1039/b713322g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between HBr and OH leading to H(2)O and Br in its ground state is studied by means of a crossed molecular beam experiment for a collision energy varying from 0.05 to 0.26 eV, the initial OH being selected in the state |JOmega> = |3/2 3/2> by an electrostatic hexapole field. The reaction cross-section is found to decrease with increasing collision energy. This negative dependence suggests that there is no barrier on the potential energy surface for the formation pathway considered. The experimental results are compared with the previously reported quantum scattering calculations of Clary et al. (D. C. Clary, G. Nyman and R. Hernandez, J. Phys. Chem., 1994, 101, 3704), and briefly discussed in the light of skewed potential energy surfaces associated with heavy-light-heavy type reactions.
Collapse
Affiliation(s)
- Dock-Chil Che
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | | | | | | | | |
Collapse
|