Liu M, Huang G, Cong Y, Tong G, Lin Z, Yin Y, Zhang C. The preparation and characterization of micelles from poly(γ-glutamic acid)-graft-poly(L-lactide) and the cellular uptake thereof.
JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015;
26:187. [PMID:
25917829 DOI:
10.1007/s10856-015-5519-y]
[Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Chemotherapy is a traditional therapeutic approach for the treatment of many solid tumors, but the poor solubility and low bioavailability of hydrophobic anti-cancer drugs greatly limit their applications. In this article, DOX-loaded micelles were fabricated based on an amphiphilic graft polymer composed of hydrophilic poly(γ-glutamic acid) (γ-PGA) and hydrophobic poly (L-lactide) (PLLA). The structure of the copolymers and the characteristic of the micelles were studied. The release profiles of doxorubicin as a model drug from the micelles were measured. Due to the protonation of the amino group of DOX and the conformational alteration of γ-PGA, the release of DOX from γ-PGA-g-PLLA micelle was faster in the acid condition, which is beneficial to tumor therapy. The cellular uptake of the DOX-loaded γ-PGA-g-PLLA micelle was proved to be a GGT-mediated process.
Collapse