1
|
Kechiche A, Al Shehimy S, Khrouz L, Monnereau C, Bucher C, Parola S, Bessmertnykh-Lemeune A, Rousselin Y, Cheprakov AV, Nasri H. Phosphonate-substituted porphyrins as efficient, cost-effective and reusable photocatalysts. Dalton Trans 2024; 53:7498-7516. [PMID: 38596893 DOI: 10.1039/d4dt00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Recent advances in visible light photocatalysis represent a significant stride towards sustainable catalytic chemistry. However, its successful implementation in fine chemical production remains challenging and requires careful optimization of available photocatalysts. Our work aims to structurally modify bioinspired porphyrin catalysts, addressing issues related to their laborious synthesis and low solubility, with the goal of increasing their efficiency and developing reusable catalytic systems. We have demonstrated the catalytic potential of readily available meso-tetrakis[4-(diethoxyphosphoryl)phenyl]porphyrins (M(TPPP)). Novel metal (Pd(II), Co(II) and In(III)) complexes with this ligand were prepared in good yields. These chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence) and electrochemical methods. The introduction of phosphonate groups on the phenyl substituents of meso-tetraphenylporphyrins (M(TPP)) improves solubility in polar organic solvents without significantly altering the photophysical properties and photostability of complexes. This structural modification also leads to easier reductions and harder oxidations of the macrocycle for all investigated complexes compared to the corresponding TPP derivatives. The free base porphyrin, zinc(II), palladium(II), and indium(III) complexes were studied as photocatalysts for oxidation of sulfides to sulfoxides using molecular oxygen as a terminal oxidant. Both dialkyl and alkyl aryl sulfides were quantitatively transformed into sulfoxides under blue LED irradiation in the acetonitrile-water mixture (10 : 1 v/v) with a low loading (0.005-0.05 mol%) of porphyrin photocatalysts, where H2(TPPP) and Pd(TPPP) were found to be the most efficient. The reaction mechanism was studied using photoluminescence and EPR spectroscopies. Then, to access reusable catalysts, water-soluble derivatives bearing phosphonic acid groups, H2(TPPP-A) and Pd(TPPP-A), were prepared in high yields. These compounds were characterized using spectroscopic methods. Single-crystal X-ray diffraction analysis of Pd(TPPP-A) reveals that the complex forms a 3D hydrogen-bonded organic framework (HOF) in the solid state. Both H2(TPPP-A) and Pd(TPPP-A) were found to catalyze the photooxidation of sulfides by molecular oxygen in the acetonitrile-water mixture (1 : 1 v/v), while only Pd(TPPP-A) resulted in selective production of sulfoxides. The complex Pd(TPPP-A) was easily recovered through extraction in the aqueous phase and successfully reused in five consecutive cycles of the sulfoxidation reaction.
Collapse
Affiliation(s)
- Azhar Kechiche
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Shaymaa Al Shehimy
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Lhoussain Khrouz
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Cyrille Monnereau
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Christophe Bucher
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Stephane Parola
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Alla Bessmertnykh-Lemeune
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, École Normale Supérieure de Lyon, 46 allée d'Italie, 69342 Lyon, France.
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, 21078 Dijon, France
| | - Andrey V Cheprakov
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia
| | - Habib Nasri
- University of Monastir, Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Sciences of Monastir, Avenue of the Environment, 5019 Monastir, Tunisia
| |
Collapse
|
2
|
Shukaev AV, Ermakova EV, Fang Y, Kadish KM, Nefedov SE, Tafeenko VA, Michalak J, Bessmertnykh-Lemeune A. Synthesis and Self-Assembly of β-Octa[(4-Diethoxyphosphoryl)phenyl]porphyrins. Inorg Chem 2023; 62:3431-3444. [PMID: 36752761 DOI: 10.1021/acs.inorgchem.2c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The β-substituted porphyrinoids commonly used to form functional assembled systems in nature yet are still scarcely used in material chemistry probably due to the laborious synthesis of these compounds. In this work, β-octa[(4-diethoxyphosphoryl)phenyl]porphyrin (2HOPPP) and its metal (Zn(II), Cd(II), Cu(II), and Ni(II)) complexes were prepared in good yields. These highly soluble chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence), electrochemical, and spectroelectrochemical methods. Attachment of the electron-deficient residue (ArP(O)(OEt)2) to the porphyrin macrocycle leads to easier reductions and harder oxidations of the macrocycle for all complexes studied as compared to corresponding meso-tetra[4-(diethoxyphosphoryl)phenyl]porphyrin derivatives reported previously. We demonstrated that the strong electron-deficient character of the MOPPP porphyrins results principally from the increase in the number of electron-withdrawing groups at the periphery of the tetrapyrrolic macrocycle. Electron-deficient porphyrins are highly required in supramolecular and material chemistry in part due to their ability to form supramolecular assemblies via the coordination of axial ligands to the central metal atom. According to single-crystal X-ray data, ZnOPPP forms in the crystalline phase dimers in which each of the two tetrapyrrolic macrocycles is connected through an unusual combination of hydrogen bonding of two phosphoryl groups and the water molecules axially coordinated to the zinc atom of the partner molecule. The involvement of water molecules in porphyrin binding allows for an increase of distance between two porphyrin mean N4 planes, up to 4.478 Å. The offset of phosphoryl groups attached to the macrocycle through a 1,4-phenylene spacer withdraws the whole porphyrin macrocycle of one molecule from spatial overlap with the macrocycle of a partner molecule and increases the Zn-Zn distance up to 10.372 Å. This still unknown type of porphyrin dimers allows one to get deeper insights into the organization of naturally occurring tetrapyrrolic macrocycles. ZnOPPP also forms a labile dimeric complex in 5.3 × 10-7-5.8 × 10-5 M chloroform solutions. In contrast, other complexes prepared in this work exist as monomeric species under these experimental conditions. The self-association constant of ZnOPPP has been determined by electronic absorption spectroscopy.
Collapse
Affiliation(s)
- Anton V Shukaev
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Sergey E Nefedov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Victor A Tafeenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Julien Michalak
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France.,Laboratoire de Chimie, UMR 5182, CNRS, ENS de Lyon, 46 allée d'Italie, Lyon 69364, France
| |
Collapse
|
4
|
Akbarzadeh AR, Nekoeifard M, Rahmatollah R, Keshavarz MH. Two spectral QSPR models of porphyrin macromolecules for chelating heavy metals and different ligands released from industrial solvents: CH 2Cl 2, CHCl 3 and toluene. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:347-371. [PMID: 32460542 DOI: 10.1080/1062936x.2020.1747534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Two simple and reliable correlations are introduced for the prediction of emission and absorption of porphyrins and their derivatives, i.e. metalloporphyrins and ligand coordinated metalloporphyrins. They can be used to sense the extracted precious metals. The proposed models require only simple structural parameters such as the number of carbon, metal and metal-free molecular fragments of desirable porphyrins or their derivatives. Since the proposed models depend on molecular structures of the desired compounds, they can be easily applied for complex molecular structures. Experimental data of 272 porphyrin derivatives were used to derive and test the novel models for the assessment of their emission (Em.) and absorption (Abs.) values in three solvents namely dichloromethane, toluene and chloroform. The values of the coefficients of determination (r 2) for the training set (183 compounds) in dichloromethane and three different test sets, corresponding to the three mentioned solvents, for the emission and absorption correlations were greater than 0.70. The calculated values of the root-mean-square error (RMSE) for the training sets of Em. and Abs. correlations were equal to 7.56 and 4.86 nm, respectively. Further statistical parameters also confirm the high reliability of the new models.
Collapse
Affiliation(s)
- A R Akbarzadeh
- Department of Chemistry, University of Science and Technology , Tehran, Islamic Republic of Iran
| | - M Nekoeifard
- Department of Chemistry, University of Science and Technology , Tehran, Islamic Republic of Iran
| | - R Rahmatollah
- Department of Chemistry, University of Science and Technology , Tehran, Islamic Republic of Iran
| | - M H Keshavarz
- Department of Chemistry, Malek-ashtar University of Technology , Shahin-shahr, Islamic Republic of Iran
| |
Collapse
|
5
|
Abdulaeva IA, Birin KP, Michalak J, Romieu A, Stern C, Bessmertnykh-Lemeune A, Guilard R, Gorbunova YG, Tsivadze AY. On the synthesis of functionalized porphyrins and porphyrin conjugates via β-aminoporphyrins. NEW J CHEM 2016. [DOI: 10.1039/c5nj03247d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step methodology to prepare a series ofmeso-tetraarylporphyrin conjugates bearing water-soluble moieties, anchoring groups and receptor subunits.
Collapse
Affiliation(s)
- Inna A. Abdulaeva
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Kirill P. Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Julien Michalak
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Christine Stern
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Roger Guilard
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR CNRS 6302
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
- France
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
- Kurnakov Institute of General and Inorganic Chemistry
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
- Kurnakov Institute of General and Inorganic Chemistry
| |
Collapse
|