1
|
Inagawa A, Iimura KI, Uehara N. Fabrication of paper-based analytical devices by a laminating method with thermal ink ribbons, sticky notes, and office appliances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:537-542. [PMID: 36645123 DOI: 10.1039/d2ay01981g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A stencil printing method utilizing sticky notes, a thermal transfer ink ribbon, and office appliances for paper-based analytical device (PAD) fabrication was proposed. A sticky note was attached to a filter paper, and a mask pattern was cut using a cutting machine. A commercially available thermal ink ribbon was then placed over the mask and laminated. We have characterized the fabricated devices. This approach could be used for the fast and mass prototyping of PADs using simple office appliances with no need for a wax printer.
Collapse
Affiliation(s)
- Arinori Inagawa
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585 Japan.
| | - Ken-Ichi Iimura
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585 Japan.
| | - Nobuo Uehara
- Faculty of Engineering, Utsunomiya University, 7-1-2, Yoto, Utsunomiya, Tochigi, 321-8585 Japan.
| |
Collapse
|
2
|
Ma P, Wang S, Wang J, Wang Y, Dong Y, Li S, Su H, Chen P, Feng X, Li Y, Du W, Liu BF. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning. Anal Chem 2022; 94:13332-13341. [PMID: 36121740 DOI: 10.1021/acs.analchem.2c01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) are emerging as powerful analytical platforms in clinical diagnostics, food safety, and environmental protection because of their low cost and favorable substrate properties for biosensing. However, the existing top-down fabrication methods of paper-based chips suffer from low resolution (>200 μm). Additionally, papers have limitations in their physical properties (e.g., thickness, transmittance, and mechanical flexibility). Here, we demonstrate a bottom-up approach for the rapid fabrication of heterogeneously controlled paper-based chip arrays. We simply print a wax-patterned microchip with wettability contrasts, enabling automatic and selective assembly of cellulose microfibers to construct predefined paper-based microchip arrays with controllable thickness. This paper-based microchip printing technology is feasible for various substrate materials ranging from inorganic glass to organic polymers, providing a versatile platform for the full range of applications including transparent devices and flexible health monitoring. Our bottom-up printing technology using cellulose microfibers as the starting material provides a lateral resolution down to 42 ± 3 μm and achieves the narrowest channel barrier down to 33 ± 2 μm. As a proof-of-concept demonstration, a flexible paper-based glucose monitor is built for human health care, requiring only 0.3 μL of sample for testing.
Collapse
Affiliation(s)
- Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shanshan Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiying Su
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,School of Biological Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Oyola-Reynoso S, Chen J, Chang BS, Bloch JF, Thuo MM. Surface polymerization of perfluorosilane treatments on paper mitigates HF production upon incineration. RSC Adv 2016. [DOI: 10.1039/c6ra20582h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Burning perfluoro trichlorosilanes (RF) treated paper leads to depolymerization of the crosslinked polysilane, distilling off liquid RF and emitting CO2 and H2O as the only gaseous products.
Collapse
Affiliation(s)
| | - Jiahao Chen
- Department of Material Science and Engineering
- Iowa State University
- Ames
- USA
- Micro-Electronic Research Center
| | - Boyce S. Chang
- Department of Material Science and Engineering
- Iowa State University
- Ames
- USA
| | | | - Martin M. Thuo
- Department of Material Science and Engineering
- Iowa State University
- Ames
- USA
- Micro-Electronic Research Center
| |
Collapse
|