1
|
Hamagami H, Yamaguchi Y, Tanaka H. Chemical Synthesis of Residue-Selectively 13C and 2H Double-Isotope-Labeled Oligosaccharides as Chemical Probes for the NMR-Based Conformational Analysis of Oligosaccharides. J Org Chem 2020; 85:16115-16127. [PMID: 33107296 DOI: 10.1021/acs.joc.0c01939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The conformational analysis of oligosaccharide is a fundamental issue in glycobiology. NMR measurements of atom-selectively 13C-labeled oligosaccharides have provided valuable information concerning their conformation, which would not be possible using nonlabeled oligosaccharides. The amount of accessible information from an atom-selectively labeled molecule, however, is limited. In this work, we report on the chemical synthesis of residue-selectively 13C- and 2H-labeled oligosaccharides and their use in conformational analysis. 1H NMR measurements of such double isotope-labeled compounds can provide a great deal of information on the dihedral angles across glycosidic linkages. We demonstrated this method in the conformational analyses of some linear and branched β(1,3)-glucan oligosaccharides.
Collapse
Affiliation(s)
- Hiroki Hamagami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo 152-8552, Japan
| | - Yoshiki Yamaguchi
- RIKEN-Max-Planck Joint Research Center for Systems Chemical Biology RIKEN Global Research Cluster, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H101 Ookayama, Meguro, Tokyo 152-8552, Japan
| |
Collapse
|
2
|
Valverde P, Quintana JI, Santos JI, Ardá A, Jiménez-Barbero J. Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. ACS OMEGA 2019; 4:13618-13630. [PMID: 31497679 PMCID: PMC6714940 DOI: 10.1021/acsomega.9b01901] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/02/2019] [Indexed: 05/12/2023]
Abstract
This perspective article is focused on the presentation of the latest advances in NMR methods and applications that are behind the exciting achievements in the understanding of glycan receptors in molecular recognition events. Different NMR-based methodologies are discussed along with their applications to scrutinize the conformation and dynamics of glycans as well as their interactions with protein receptors.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Jon I. Quintana
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Jose I. Santos
- SGIker
UPV/EHU, Centro Joxe Mari Korta, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Ana Ardá
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
- E-mail: (A.A.)
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department
Organic Chemistry II, Faculty Science &
Technology, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- E-mail: (J.J.-B.)
| |
Collapse
|
3
|
Ardá A, Jiménez-Barbero J. The recognition of glycans by protein receptors. Insights from NMR spectroscopy. Chem Commun (Camb) 2018; 54:4761-4769. [PMID: 29662983 DOI: 10.1039/c8cc01444b] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbohydrates (glycans, saccharides, sugars) are everywhere. In fact, glycan-protein interactions are involved in many essential processes of life and disease. The understanding of the key structural details at the atomic and molecular level is of paramount importance to effectively design molecules for therapeutic purposes. Different approximations may be employed to decipher these molecular recognition processes with high resolution. Advances in cryo-electron microscopy are providing exquisite details on different biological mechanisms involving sugars, while better and better protocols for structural refinement in the application of X-ray methods for protein-sugar complexes and glycoproteins are also permitting fantastic advances in the glycoscience arena. Alternatively, NMR spectroscopy remains as one of the most rewarding techniques to explore protein-carbohydrate interactions. In fact, given the intrinsic dynamic nature of saccharides, NMR can afford exquisite structural information at the atomic detail, not accessible by other techniques. However, the access to this information is sometimes intricate, and requires careful analysis and well-defined strategies. In this review, we have highlighted these issues and presented an overview of different modern NMR approaches with a focus on the latest developments and challenges.
Collapse
Affiliation(s)
- Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.
| | | |
Collapse
|
4
|
Yanaka S, Yagi H, Yogo R, Yagi-Utsumi M, Kato K. Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems. JOURNAL OF BIOMOLECULAR NMR 2018; 71:193-202. [PMID: 29492730 DOI: 10.1007/s10858-018-0169-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/17/2018] [Indexed: 05/25/2023]
Abstract
Glycoproteins are characterized by the heterogeneous and dynamic nature of their glycan moieties, which hamper crystallographic analysis. NMR spectroscopy provides potential advantages in dealing with such complicated systems, given that the target molecules can be isotopically labeled. Methods of metabolic isotope labeling in recombinant glycoproteins have been developed recently using a variety of eukaryotic production vehicles, including mammalian, yeast, insect, and plant cells, each of which has a distinct N-glycan diversification pathway. Yeast genetic engineering has enabled the overexpression of homogeneous high-mannose-type oligosaccharides with 13C labeling for NMR characterization of their conformational dynamics. The utility of stable isotope-assisted NMR spectroscopy has also been demonstrated using the Fc fragment of immunoglobulin G (IgG) as a model glycoprotein, providing useful information regarding intramolecular carbohydrate-protein interactions. Transverse relaxation optimization of intact IgG with a molecular mass of 150 kDa has been achieved by tailored deuteration of selected amino acid residues using a mammalian expression system. This offers a useful probe for the characterization of molecular interaction networks in multimolecular crowded systems typified by serum. Perspectives regarding the development of techniques for tailoring glycoform designs and isotope labeling of recombinant glycoproteins are also discussed.
Collapse
Affiliation(s)
- Saeko Yanaka
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Rina Yogo
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Maho Yagi-Utsumi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
5
|
Satoh T, Kato K. Structural Aspects of ER Glycoprotein Quality-Control System Mediated by Glucose Tagging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:149-169. [PMID: 30484248 DOI: 10.1007/978-981-13-2158-0_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N-linked oligosaccharides attached to proteins act as tags for glycoprotein quality control, ensuring their appropriate folding and trafficking in cells. Interactions with a variety of intracellular lectins determine glycoprotein fates. Monoglucosylated glycoforms are the hallmarks of incompletely folded glycoproteins in the protein quality-control system, in which glucosidase II and UDP-glucose/glycoprotein glucosyltransferase are, respectively, responsible for glucose trimming and attachment. In this review, we summarize a recently emerging view of the structural basis of the functional mechanisms of these key enzymes as well as substrate N-linked oligosaccharides exhibiting flexible structures, as revealed by applying a series of biophysical techniques including small-angle X-ray scattering, X-ray crystallography, high-speed atomic force microscopy , electron microscopy , and computational simulation in conjunction with NMR spectroscopy.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan. .,Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
| |
Collapse
|
6
|
YAMAGUCHI T, WATANABE T, YAGI H, KATO K. Exploration of Conformational Spaces of Oligosaccharides byCombining Molecular Dynamics Simulation and NMR Spectroscopy. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2018. [DOI: 10.2477/jccj.2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Takumi YAMAGUCHI
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University,3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603
| | - Tokio WATANABE
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University,3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603
| | - Hirokazu YAGI
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University,3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603
| | - Koichi KATO
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University,3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science,National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787
| |
Collapse
|
7
|
Nestor G, Anderson T, Oscarson S, Gronenborn AM. Exploiting Uniformly 13C-Labeled Carbohydrates for Probing Carbohydrate-Protein Interactions by NMR Spectroscopy. J Am Chem Soc 2017; 139:6210-6216. [PMID: 28406013 DOI: 10.1021/jacs.7b01929] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NMR of a uniformly 13C-labeled carbohydrate was used to elucidate the atomic details of a sugar-protein complex. The structure of the 13C-labeled Manα(1-2)Manα(1-2)ManαOMe trisaccharide ligand, when bound to cyanovirin-N (CV-N), was characterized and revealed that in the complex the glycosidic linkage torsion angles between the two reducing-end mannoses are different from the free trisaccharide. Distances within the carbohydrate were employed for conformational analysis, and NOE-based distance mapping between sugar and protein revealed that Manα(1-2)Manα(1-2)ManαOMe is bound more intimately with its two reducing-end mannoses into the domain A binding site of CV-N than with the nonreducing end unit. Taking advantage of the 13C spectral dispersion of 13C-labeled carbohydrates in isotope-filtered experiments is a versatile means for a simultaneous mapping of the binding interactions on both, the carbohydrate and the protein.
Collapse
Affiliation(s)
- Gustav Nestor
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15261, United States
| | - Taigh Anderson
- Centre for Synthesis and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin , Belfield, Dublin 4, Ireland
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
Suzuki T, Kajino M, Yanaka S, Zhu T, Yagi H, Satoh T, Yamaguchi T, Kato K. Conformational Analysis of a High-Mannose-Type Oligosaccharide Displaying Glucosyl Determinant Recognised by Molecular Chaperones Using NMR-Validated Molecular Dynamics Simulation. Chembiochem 2017; 18:396-401. [PMID: 27995699 DOI: 10.1002/cbic.201600595] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 12/11/2022]
Abstract
Exploration of the conformational spaces of flexible oligosaccharides is essential to gain deeper insights into their functional mechanisms. Here we characterised dynamic conformation of a high-mannose-type dodecasaccharide with a terminal glucose residue, a critical determinant recognised by molecular chaperones. The dodecasaccharide was prepared by our developed chemoenzymatic technique, which uses 13 C labelling and lanthanide tagging to detect conformation-dependent paramagnetic effects by NMR spectroscopy. The NMR-validated molecular dynamics simulation produced the dynamic conformational ensemble of the dodecasaccharide. This determined its spatial distribution as well as the glycosidic linkage conformation of the terminal glucose determinant. Moreover, comparison of our results with previously reported crystallographic data indicates that the chaperone binding to its target oligosaccharides involves an induced-fit mechanism.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Megumi Kajino
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saeko Yanaka
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Tong Zhu
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Hirokazu Yagi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tadashi Satoh
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takumi Yamaguchi
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, 923-1292, Japan
| | - Koichi Kato
- Faculty and Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Institute for Molecular Science, Okazaki Institute for Integrative Biosciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| |
Collapse
|