1
|
Wang Z, Hao Z, Zhang Y, Sun J, Zhang Y. Synthesis of novel highly-dispersed manganese oxide on porous calcium silicate for the catalytic oxidation of toluene. NEW J CHEM 2022. [DOI: 10.1039/d1nj04679a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly-dispersed MnOx with abundant oxygen vacancy on porous calcium silicate for the catalytic oxidation of toluene.
Collapse
Affiliation(s)
- Ziqiang Wang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Zhifei Hao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yinmin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Junmin Sun
- Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Yongfeng Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, Inner Mongolia University of Technology, Hohhot, 010051, China
| |
Collapse
|
2
|
Jiang X, Chen Y, Hou C, Liu X, Ou C, Han W, Sun X, Li J, Wang L, Shen J. Promotion of Para-Chlorophenol Reduction and Extracellular Electron Transfer in an Anaerobic System at the Presence of Iron-Oxides. Front Microbiol 2018; 9:2052. [PMID: 30214440 PMCID: PMC6125335 DOI: 10.3389/fmicb.2018.02052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
Anaerobic dechlorination of chlorophenols often subjects to their toxicity and recalcitrance, presenting low loading rate and poor degradation efficiency. In this study, in order to accelerate p-chlorophenol (p-CP) reduction and extracellular electron transfer in an anaerobic system, three iron-oxide nanoparticles, namely hematite, magnetite and ferrihydrite, were coupled into an anaerobic system, with the performance and underlying role of iron-oxide nanoparticles elucidated. The reductive dechlorination of p-CP was notably improved in the anaerobic systems coupled by hematite and magnetite, although ferrihydrite did not plays a positive role. Enhanced dechlorination of p-CP in hematite or magnetite coupled anaerobic system was linked to the obvious accumulation of acetate, lower oxidation-reduction potential and pH, which were beneficial for reductive dechlorination. Electron transfer could be enhanced by Fe2+/Fe3+ redox couple on the iron oxides surface formed through dissimilatory iron-reduction. This study demonstrated that the coupling of iron-oxide nanoparticles such as hematite and magnetite could be a promising alternative to the conventional anaerobic reduction process for the removal of CPs from wastewater.
Collapse
Affiliation(s)
- Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yuzhe Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chen Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Changjin Ou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
3
|
Jiang X, Shi H, Shen J, Han W, Sun X, Li J, Wang L. Synergistic effect of pyrrolic N and graphitic N for the enhanced nitrophenol reduction of nitrogen-doped graphene-modified cathode in the bioelectrochemical system. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|