1
|
Wujcicki Ł, Kluczka J. Recovery of Phosphate(V) Ions from Water and Wastewater Using Chitosan-Based Sorbents Modified-A Literature Review. Int J Mol Sci 2023; 24:12060. [PMID: 37569435 PMCID: PMC10418947 DOI: 10.3390/ijms241512060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Over the past two decades, there has been increasing interest in the use of low-cost and effective sorbents in water treatment. Hybrid chitosan sorbents are potential materials for the adsorptive removal of phosphorus, which occurs in natural waters mainly in the form of orthophosphate(V). Even though there are numerous publications on this topic, the use of such sorbents in industrial water treatment and purification is limited and controversial. However, due to the explosive human population growth, the ever-increasing global demand for food has contributed to the consumption of phosphorus compounds and other biogenic elements (such as nitrogen, potassium, or sodium) in plant cultivation and animal husbandry. Therefore, the recovery and reuse of phosphorus compounds is an important issue to investigate for the development and maintenance of a circular economy. This paper characterizes the problem of the presence of excess phosphorus in water reservoirs and presents methods for the adsorptive removal of phosphate(V) from water matrices using chitosan composites. Additionally, we compare the impact of modifications, structure, and form of chitosan composites on the efficiency of phosphate ion removal and adsorption capacity. The state of knowledge regarding the mechanism of adsorption is detailed, and the results of research on the desorption of phosphates are described.
Collapse
Affiliation(s)
| | - Joanna Kluczka
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland;
| |
Collapse
|
2
|
Carr AJ, Lee SE, Kumal RR, Bu W, Uysal A. Convenient Confinement: Interplay of Solution Conditions and Graphene Oxide Film Structure on Rare Earth Separations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57133-57143. [PMID: 36533427 DOI: 10.1021/acsami.2c16156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene oxide (GO) membranes are excellent candidates for a range of separation applications, including rare earth segregation and radionuclide decontamination. Understanding nanoscale water and ion behavior near interfacial GO is critical for groundbreaking membrane advances, including improved selectivity and permeability. We experimentally examine the impact of solution conditions on water and lanthanide interactions with interfacial GO films and connect these results to GO membrane performance. The investigation of the confined films at the air-water interface with a combination of surface-specific spectroscopy and X-ray scattering techniques allows us to understand water and ion behaviors separately. Sum frequency generation spectroscopy reveals a dramatic change in interfacial water organization because of graphene oxide film deprotonation. Interfacial X-ray fluorescence measurements show a 17× increase in adsorbed lanthanide to the GO film from subphase pH 3 to pH 9. Liquid surface X-ray reflectivity data show an additional 2.7 e- per Å2 for GO films at pH 9 versus pH 3 as well. These results are connected to GO membrane performance, which show increased selectivity and decreased flux for membranes filtering pH 9 solutions. We posit insoluble lanthanide hydroxides form at higher pHs. Taken together, these results highlight the importance of interfacial experiments on model GO systems.
Collapse
Affiliation(s)
- Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Wei Bu
- NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois60637, United States
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| |
Collapse
|
3
|
Li S, Huang X, Liu J, Lu L, Peng K, Bhattarai R. PVA/PEI crosslinked electrospun nanofibers with embedded La(OH) 3 nanorod for selective adsorption of high flux low concentration phosphorus. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121457. [PMID: 31668757 DOI: 10.1016/j.jhazmat.2019.121457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 05/25/2023]
Abstract
Phosphorus (P) is a limiting element causing eutrophication, and thus, its removal has elicited significant attention in recent years. In this study, a La(OH)3 embedded nanorod loaded PVA/PEI crosslinked nanofiber membrane (LNPPM) was synthesized for phosphorus removal at a low concentration and under high flux conditions. Comparative tests demonstrated that an LNPPM exhibited a high phosphate adsorption capacity (165.9 mg P/g La) and performed well even under interference with the pH and coexisting ions (Cl-, SO42-, NO3-, and F-). Through a continuous adsorption test, LNPPM also showed a fast adsorption efficiency with a 73.7% capacity used for C/C0 = 0.5 under a low concentration and high flux phosphate solution. Fourier transform infrared, X-ray diffraction, X-ray photoelectron spectroscopy, SEM-EDS, and high-resolution transmission electron microscopy analyses indicated that the La(OH)3 nanorod intensively and uniformly embedded into the nanofibers, providing an ideal condition for phosphate adsorption. A mechanistic analysis showed that the ligand exchange played a vital role in the phosphate adsorption of LNPPM. A cost index (capacity/synthesis cost) comparison with typical super phosphate adsorbents also indicated that LNPPM (795 mg P/USD) could be a viable option owing to its simple synthesis procedure, low synthesis cost, and considerable capacity. This technique shows promise for use in most dephosphorization applications.
Collapse
Affiliation(s)
- Shiyang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, People's Republic of China.
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, People's Republic of China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, People's Republic of China
| | - Rabin Bhattarai
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, 1304 W Pennsylvania Ave, Urbana IL 61801, USA
| |
Collapse
|