1
|
Zhang N, Wang C, Xu H, Zheng M, Jiang H, Chen K, Ma Z. Asymmetric Total Synthesis of Alstrostine G Utilizing a Catalytic Asymmetric Desymmetrization Strategy. Angew Chem Int Ed Engl 2024; 63:e202407127. [PMID: 38818628 DOI: 10.1002/anie.202407127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-β-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.
Collapse
Affiliation(s)
- Nanping Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Cheng Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Hailong Xu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Ming Zheng
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Zhiqiang Ma
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou, 510641, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
2
|
Dutta S, Porey A, Guin J. N-Heterocyclic carbene catalyzed desymmetrization of diols: access to enantioenriched oxindoles having a C3-quaternary stereocenter. Chem Commun (Camb) 2023; 59:5771-5774. [PMID: 37096372 DOI: 10.1039/d3cc00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein, we describe an effective strategy for enantioselective synthesis of oxindoles having a C3-quaternary stereocenter via N-heterocyclic carbene (NHC) catalyzed desymmetrization of diols. The process is based on the catalytic asymmetric transfer acylation of primary alcohols using readily available aldehydes as an acylation agent. The reaction enables easy access to diversely functionalized C3-quaternary oxindoles with excellent enantioselectivity. The synthetic potential of the process is further demonstrated via the preparation of the key intermediate for (-)-esermethole and (-)-physostigmine.
Collapse
Affiliation(s)
- Sourav Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Arka Porey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
3
|
Yu ZL, Cheng YF, Liu JR, Yang W, Xu DT, Tian Y, Bian JQ, Li ZL, Fan LW, Luan C, Gao A, Gu QS, Liu XY. Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C-O Bond Coupling of Acyl Radicals. J Am Chem Soc 2023; 145:6535-6545. [PMID: 36912664 DOI: 10.1021/jacs.3c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Transition-metal-catalyzed enantioselective functionalization of acyl radicals has so far not been realized, probably due to their relatively high reactivity, which renders the chemo- and stereocontrol challenging. Herein, we describe Cu(I)-catalyzed enantioselective desymmetrizing C-O bond coupling of acyl radicals. This reaction is compatible with (hetero)aryl and alkyl aldehydes and, more importantly, displays a very broad scope of challenging alcohol substrates, such as 2,2-disubstituted 1,3-diols, 2-substituted-2-chloro-1,3-diols, 2-substituted 1,2,3-triols, 2-substituted serinols, and meso primary 1,4-diols, providing enantioenriched esters characterized by challenging acyclic tetrasubstituted carbon stereocenters. Partnered by one- or two-step follow-up transformations, this reaction provides a convenient and practical strategy for the rapid preparation of chiral C3 building blocks from readily available alcohols, particularly the industrially relevant glycerol. Mechanistic studies supported the proposed C-O bond coupling of acyl radicals.
Collapse
Affiliation(s)
- Zhang-Long Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wu Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dan-Tong Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Qian Bian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cheng Luan
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Mandai H, Matsuura Y, Johari FMB, Mitsudo K, Suga S. An Efficient Protocol for Selective Silylation of Hydroxy Group Using N, O-Bis( tert-butyldimethylsilyl)acetamide and N, N-Dimethyl-4-aminopyridine N-oxide. CHEM LETT 2022. [DOI: 10.1246/cl.220281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293
| | - Yuichiro Matsuura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama 700-8530
| | - Fatin Mahfuzah Binti Johari
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama 700-8530
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama 700-8530
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama 700-8530
| |
Collapse
|
5
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Estrada CD, Ang HT, Vetter KM, Ponich AA, Hall DG. Enantioselective Desymmetrization of 2-Aryl-1,3-propanediols by Direct O-Alkylation with a Rationally Designed Chiral Hemiboronic Acid Catalyst That Mitigates Substrate Conformational Poisoning. J Am Chem Soc 2021; 143:4162-4167. [PMID: 33719442 DOI: 10.1021/jacs.1c00759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Enantioselective desymmetrization by direct monofunctionalization of prochiral diols is a powerful strategy to prepare valuable synthetic intermediates in high optical purity. Boron acids can activate diols toward nucleophilic additions; however, the design of stable chiral catalysts remains a challenge and highlights the need to identify new chemotypes for this purpose. Herein, the discovery and optimization of a bench-stable chiral 9-hydroxy-9,10-boroxarophenanthrene catalyst is described and applied in the highly enantioselective desymmetrization of 2-aryl-1,3-diols using benzylic electrophiles under operationally simple, ambient conditions. Nucleophilic activation and discrimination of the enantiotopic hydroxy groups on the diol substrate occurs via a defined chairlike six-membered anionic complex with the hemiboronic heterocycle. The optimal binaphthyl-based catalyst 1g features a large aryloxytrityl group to effectively shield one of the two prochiral hydroxy groups on the diol complex, whereas a strategically placed "methyl blocker" on the boroxarophenanthrene unit mitigates the deleterious effect of a competing conformation of the complexed diol that compromised the overall efficiency of the desymmetrization process. This methodology affords monoalkylated products in enantiomeric ratios equal or over 95:5 for a wide range of 1,3-propanediols with various 2-aryl/heteroaryl groups.
Collapse
Affiliation(s)
- Carl D Estrada
- Department of Chemistry, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Hwee Ting Ang
- Department of Chemistry, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Kim-Marie Vetter
- Department of Chemistry, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Ashley A Ponich
- Department of Chemistry, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Dennis G Hall
- Department of Chemistry, Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
7
|
Mandai H, Hironaka T, Mitsudo K, Suga S. Acylative Desymmetrization of Cyclic meso-1,3-Diols by Chiral DMAP Derivatives. CHEM LETT 2021. [DOI: 10.1246/cl.200809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Tsubasa Hironaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Mandai H, Suga S, Ashihara K, Mitsudo K. Acylative Desymmetrization of Glycerol Derivatives by Chiral DMAP Derivatives. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Mandai H, Shiomoto R, Fujii K, Mitsudo K, Suga S. Kinetic Resolution of Tertiary Alcohols by Chiral DMAP Derivatives: Enantioselective Access to 3-Hydroxy-3-substituted 2-Oxindoles. Org Lett 2020; 23:1169-1174. [DOI: 10.1021/acs.orglett.0c03956] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Ryuhei Shiomoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuki Fujii
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Meng SS, Yu P, Yu YZ, Liang Y, Houk KN, Zheng WH. Computational Design of Enhanced Enantioselectivity in Chiral Phosphoric Acid-Catalyzed Oxidative Desymmetrization of 1,3-Diol Acetals. J Am Chem Soc 2020; 142:8506-8513. [PMID: 32283928 DOI: 10.1021/jacs.0c02719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A general method for the highly enantioselective desymmetrization of 2-alkyl-substituted 1,3-diols is presented. A combination of computational and experimental studies has been utilized to understand the origin of the stereocontrol of oxidative desymmetrization of 1,3-diol benzylideneacetals. DFT calculations demonstrate that the acetal protecting group is highly influential for high enantioselectivity, and a simple but effective new protecting group has been designed. The desymmetrization reactions proceed with high enantioselectivity for a variety of substrates. Moreover, the reaction conditions are also shown to be effective for desymmetrization of 2,2-dialkyl-substituted 1,3-diols, which provides chiral products bearing acyclic all-carbon quaternary stereocenters. The method has been applied to the formal synthesis of indoline alkaloids.
Collapse
Affiliation(s)
- Shan-Shui Meng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Peiyuan Yu
- Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Zhe Yu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Nishino R, Hamada S, Elboray EE, Ueda Y, Kawabata T, Furuta T. Axial chirality in biaryl N,N-dialkylaminopyridine derivatives bearing an internal carboxy group. Chirality 2020; 32:588-593. [PMID: 32134158 DOI: 10.1002/chir.23207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 01/21/2023]
Abstract
Axial chirality in N,N-dimethylaminopyridines as well as N,N-dipropylaminopyridines bearing an internal carboxy group were evaluated based on their racemization barriers and circular dichroism spectra. The half-life of racemization of N,N-dipropylaminopyridine derivative 2 was estimated to be 19.7 days at 20°C. Its enantiomers isolated as optically active forms showed positive-negative and negative-positive Cotton effects for (+)-2 and (-)-2, respectively, from 310 to 210 nm. Furthermore, (-)-2 was applied as a chiral nucleophilic catalyst and exhibited asymmetric induction in acylative kinetic resolution of 1-(1-naphthyl)ethane-1-ol.
Collapse
Affiliation(s)
- Reiko Nishino
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Shohei Hamada
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Elghareeb E Elboray
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan.,Chemistry Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Takeo Kawabata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Takumi Furuta
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|