1
|
Usuda H, Mishima Y, Noda K, Toyoshima T, Sakurai K, Takamura C, Takahashi A, Minami K, Kawamoto T. Vesicles exhibit high-performance removal of per-and polyfluoroalkyl substances (PFAS) depending on their hydrophobic groups. CHEMOSPHERE 2024; 363:142818. [PMID: 39002653 DOI: 10.1016/j.chemosphere.2024.142818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The removal of per- and polyfluoroalkyl substances (PFAS) from drinking water is urgently needed. Here, we demonstrated high performance of vesicles on PFAS adsorption. Vesicles used in this study were enclosed amphiphile bilayers keeping their hydrophobic groups inside and their hydrophilic groups outside in water. The distribution coefficient Kd of perfluorooctane sulfonic acid (PFOS) for vesicles was 5.3 × 105 L/kg, which is higher than that for granulated activated carbon (GAC), and Kd of perfluorooctanoic acid (PFOA) for vesicles was 103-104 L/kg. The removal efficiencies of PFOA and PFOS adsorption on DMPC vesicles were 97.1 ± 0.1% and 99.4 ± 0.2%, respectively. The adsorption behaviors of PFOA and PFOS on vesicles were investigated by changing the number of cis-double bonds in the hydrophobic chains of the vesicle constituents. Moreover, vesicles formed by membranes in the different phases were also tested. The results revealed that, when vesicles are formed of a membrane in the liquid-crystalline (liquid-like) phase, the adsorption amounts of both PFOA and PFOS increased as the cis-double bond in the hydrocarbon chains decreased, which is considered due to molecular shape similarity. When vesicles are formed of a membrane in the gel (solid-like) phase, they do not adsorb PFAS as much as in the liquid-crystalline phase, even though the hydrocarbon chains do not have any cis-double bond. Our findings demonstrate that vesicles can be utilized as PFAS adsorbents by optimizing the structure of vesicle constituents and their thermodynamical phase. Indeed, the vesicles (DMPC) were demonstrated that they can adsorb PFOA and PFOS, and be coagulated by a coagulant even in environmental water. The coagulation will enable the removal of PFOA and PFOS from the water after adsorption.
Collapse
Affiliation(s)
- Hatsuho Usuda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| | - Yoshie Mishima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Keiko Noda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takahiro Toyoshima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Koji Sakurai
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Chieko Takamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Akira Takahashi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Kimitaka Minami
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| |
Collapse
|
2
|
Scheidegger L, Stricker L, Beltramo PJ, Vermant J. Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids. J Phys Chem B 2022; 126:5842-5854. [PMID: 35895895 PMCID: PMC9377339 DOI: 10.1021/acs.jpcb.2c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Indexed: 11/29/2022]
Abstract
The formation of domains in multicomponent lipid mixtures has been suggested to play a role in moderating signal transduction in cells. Understanding how domain size may be regulated by both hybrid lipid molecules and impurities is important for understanding real biological processes; at the same time, developing model systems where domain size can be regulated is crucial to enable systematic studies of domain formation kinetics and thermodynamics. Here, we perform a model study of the effects of oil molecules, which swell the bilayer, and line-active hybrid phospholipids using a thermally induced liquid-solid phase separation in planar, free-standing lipid bilayers consisting of DOPC and DPPC (1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, respectively). The experiments show that the kinetics of domain growth are significantly affected by the type and molecular structure of the oil (squalene, hexadecane, or decane), with the main contributing factors being the degree of swelling of the bilayer and the changes in line tension induced by the different oils, with smaller domains resulting from systems with smaller values of the line tension. POPC (1-palmitoyl-sn-2-oleoyl-glycero-3-phosphocholine), on the other hand, acts as a line-active hybrid lipid, reducing the domain size when added in small amounts and slowing down domain coarsening. Finally, we show that despite the regulation of domain size by both methods, the phase transition temperature is influenced by the presence of oil molecules but not significantly by the presence of hybrid lipids. Overall, our results show how to regulate domain size in binary membrane model systems, over a wide range of length scales, by incorporating oil molecules and hybrid lipids.
Collapse
Affiliation(s)
- Laura Scheidegger
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Laura Stricker
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Peter J. Beltramo
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Jan Vermant
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Wurl A, Ott M, Plato E, Meister A, Hamdi F, Kastritis PL, Blume A, Ferreira TM. Filling the Gap with Long n-Alkanes: Incorporation of C20 and C30 into Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8595-8606. [PMID: 35786894 DOI: 10.1021/acs.langmuir.2c00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Investigating how hydrophobic molecules mix with phospholipid bilayers and how they affect membrane properties is commonplace in biophysics. Despite this, a molecular-level empirical description of a membrane model as simple as a phospholipid bilayer with long linear hydrophobic chains incorporated is still missing. Here, we present an unprecedented molecular characterization of the incorporation of two long n-alkanes, n-eicosane (C20) and n-triacontane (C30) with 20 and 30 carbons, respectively, in phosphatidylcholine (PC) bilayers using a combination of experimental techniques (2H NMR, 31P NMR, 1H-13C dipolar recoupling solid-state NMR, X-ray scattering, and cryogenic electron microscopy) and atomistic molecular dynamics (MD) simulations. At low hydration, deuterated C20 and C30 yield 2H NMR spectra evidencing anisotropic-motion, which demonstrates their miscibility in PC membranes up to a critical alkane-to-acyl-chain volume fraction, ϕc. The acquired 2H NMR spectra of C20 and C30 have notably different lineshapes. At low alkane volume fractions below ϕc, CHARMM36 MD simulations predict such 2H NMR spectra qualitatively and thus enable an atomistic-level interpretation of the spectra. Above ϕc, the 2H NMR lineshapes become characteristic of motions in the intermediate-regime that, together with the MD simulation results, suggest the onset of immiscibility between the alkane molecules and the acyl chains. For all the systems investigated, the phospholipid molecular structure is unperturbed by the presence of the alkanes. However, at conditions of excess hydration and at surprisingly low alkane fractions below ϕc, a peak characteristic of isotropic motion is observed in both the 2H spectra of the alkanes and 31P spectra of the phospholipids, strongly indicating that the incorporation of the alkanes induces a reduction on the average radius of the lipid vesicles.
Collapse
Affiliation(s)
- Anika Wurl
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Maria Ott
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Eric Plato
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Annette Meister
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Farzad Hamdi
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Panagiotis L Kastritis
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Alfred Blume
- Insitute of Chemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Tiago M Ferreira
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
4
|
Hishida M, Shimokawa N, Okubo Y, Taguchi S, Yamamura Y, Saito K. Phase Transition from the Interdigitated to Bilayer Membrane of a Cationic Surfactant Induced by Addition of Hydrophobic Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14699-14709. [PMID: 33232164 DOI: 10.1021/acs.langmuir.0c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the transition between a bilayer and an interdigitated membrane of a surfactant and lipid has been widely known for long, its mechanism remains unclear. This study reveals the transition mechanism of a cationic surfactant, dioctadecyldimethylammonium chloride (DODAC), through experiments and theoretical calculations. Experimentally, the transition from the interdigitated to bilayer structure in the gel phase of DODAC is found to be induced by adding hydrophobic molecules such as n-alkane and its derivatives. Further addition induces a different transition to another bilayer phase. Our theory, considering the competition of the electrostatic interaction between cationic headgroups and the hydrophobic interaction emerging at the alkyl-chain ends exposed to water, reproduces these two phase transitions. In addition, changes in alkyl-chain packing in the membranes at these transitions are reproduced. The underlying mechanism is that the interdigitated membrane is formed at a small additive content due to electrostatic repulsion. As the energetic disadvantage with respect to the hydrophobic interaction becomes dominant as the content increases, the transition to the bilayer occurs at a specific content. The bilayer-bilayer transition at a higher content is induced by the change in the balance of these interactions. Based on a similar concept, we suggest the mechanism of the additive-induced bilayer-interdigitated transition of phospholipids, i.e., neutrally charged (zwitterionic) surfactants.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Yuki Okubo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shun Taguchi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
5
|
Ramos AP, Doroudgar M, Lafleur M. Determination of n-alkane partitioning within phosphatidylethanolamine Lα/HII phases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183201. [DOI: 10.1016/j.bbamem.2020.183201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
|
6
|
Usuda H, Hishida M, Kelley EG, Yamamura Y, Nagao M, Saito K. Interleaflet coupling of n-alkane incorporated bilayers. Phys Chem Chem Phys 2020; 22:5418-5426. [PMID: 31904060 DOI: 10.1039/c9cp06059f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The relationship between the membrane bending modulus (κ) and compressibility modulus (KA) depends on the extent of coupling between the two monolayers (leaflets). Using neutron spin echo (NSE) spectroscopy, we investigate the effects of n-alkanes on the interleaflet coupling of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. Structural studies with small-angle X-ray and neutron scattering (SAXS and SANS) showed that the bilayer thickness increased with increasing n-alkane length, while NSE suggested that the bilayers became softer. Additional measurements of the membrane thickness fluctuations with NSE suggested that the changes in elastic moduli were due to a decrease in coupling between the leaflets upon addition of the longer n-alkanes. The decreased coupling with elongating n-alkane length was explained based on the n-alkane distribution within the bilayers characterized by SANS measurement of bilayers composed of protiated DPPC and deuterated n-alkanes. A higher fraction of the incorporated long n-alkanes were concentrated at the central plane of the bilayers and decreased the physical interaction between the leaflets. Using NSE and SANS, we successfully correlated changes in the mesoscopic collective dynamics and microscopic membrane structure upon incorporation of n-alkanes.
Collapse
Affiliation(s)
- Hatsuho Usuda
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Hishida M, Yanagisawa R, Yamamura Y, Saito K. Phase separation of a ternary lipid vesicle including n-alkane: Rugged vesicle and bilayer flakes formed by separation between highly rigid and flexible domains. J Chem Phys 2019; 150:064904. [PMID: 30769992 DOI: 10.1063/1.5080177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigate the phase separation of a ternary lipid bilayer including n-alkane and construct the ternary phase diagram. When a certain proportion of a long n-alkane is mixed with a binary mixture of lipids, which exhibit the disordered liquid-crystalline phase and the ordered gel phase at room temperature, we observed the characteristic morphology of bilayers with phase separation. The ordered bilayer forms flat and rigid domains, which is connected or rimmed with flexible domains in the disordered phase. The asymmetric emergence of the phase separation region close to the ordered phase side is interpreted based on the almost equal distribution of the n-alkane to the ordered and disordered phase domains.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Ryuta Yanagisawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|