1
|
Wiesner W, Arias JYM, Jökel J, Cao R, Apfel UP. Scaling up electrochemical CO 2 reduction: enhancing the performance of metalloporphyrin complexes in zero-gap electrolyzers. Chem Commun (Camb) 2024; 60:14668-14671. [PMID: 39576048 DOI: 10.1039/d4cc04497e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Metalloporphyrins are widely studied in the field of electrochemical CO2 reduction (CO2R), with the main focus on homogenous catalysis. Herein, six metalloporphyrins (M = Fe, Co, Ni, Cu, Zn, Ag) were incorporated in gas diffusion electrodes and used in zero-gap electrolyzers to reach varying FEs for CO of <1% (Fe,Ni), 11% (Cu), 37% (Zn), 75% (Co) and nearly 100% (Ag) at a current density of 50 mA cm-2.
Collapse
Affiliation(s)
- Wiebke Wiesner
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstraße 150, 44801 Bochum, Germany.
| | | | - Julia Jökel
- Fraunhofer UMSICHT, Department for Electrosynthesis, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Rui Cao
- Shaanxi Normal University, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstraße 150, 44801 Bochum, Germany.
- Fraunhofer UMSICHT, Department for Electrosynthesis, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
2
|
Seelajaroen H, Apaydin DH, Spingler B, Jungsuttiwong S, Wongnongwa Y, Rojanathanes R, Sariciftci NS, Thamyongkit P. Synthesis and Structure-Property Relationship of meso-Substituted Porphyrin- and Benzoporphyrin-Thiophene Conjugates toward Electrochemical Reduction of Carbon Dioxide. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:16555-16569. [PMID: 39257468 PMCID: PMC11382159 DOI: 10.1021/acs.energyfuels.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 09/12/2024]
Abstract
A novel series of ZnII-trans-A2B2 porphyrins and benzoporphyrins bearing phenyl and thiophene-based meso-substituents was successfully synthesized and characterized by spectroscopic and electrochemical techniques. Systematic comparison among the compounds in this series, together with the corresponding A4 analogs previously studied by our group, led to the understanding of the effects of π-conjugated system extension of a porphyrin core through β-fused rings, replacement of the phenyl with the thiophene-based meso-groups, and introduction of additional thiophene rings on thienyl substituents on photophysical and electrochemical properties. Oxidative electropolymerization through bithiophenyl units of both A4 and trans-A2B2 analogs was achieved, resulting in porphyrin- and benzoporphyrin-oligothiophene conjugated polymers, which were characterized by cyclic voltammetry and absorption spectrophotometry. Preliminary studies on catalytic performance toward electrochemical reduction of carbon dioxide (CO2) was described herein to demonstrate the potential of the selected compounds for serving as homogeneous and heterogeneous electrocatalysts for the conversion of CO2 to carbon monoxide (CO).
Collapse
Affiliation(s)
- H Seelajaroen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry Johannes Kepler University Linz, Linz 4040, Austria
| | - D H Apaydin
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry Johannes Kepler University Linz, Linz 4040, Austria
| | - B Spingler
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - S Jungsuttiwong
- Center for Organic Electronic and Alternative Energy, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Y Wongnongwa
- NSTDA Supercomputer Center (ThaiSC), National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - R Rojanathanes
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - N S Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Institute of Physical Chemistry Johannes Kepler University Linz, Linz 4040, Austria
| | - P Thamyongkit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Warren JJ. Examining the Importance of Hydrogen Bonding and Proton Transfer in Iron Porphyrin-Mediated Carbon Dioxide Upconversion. Acc Chem Res 2024; 57:2512-2521. [PMID: 39163548 DOI: 10.1021/acs.accounts.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
ConspectusThe title should give a sense of the "big picture" of this Account, but what is it really about? An unexpected change in research direction? A series of courageous and creative students? A team taking on challenging problems in chemistry? The answer is a definite "yes" to all of the above. More specifically, the problem in which we are interested is the upconversion or valorization of carbon dioxide. This problem has captured the attention of a great many chemists in earnest following the gas crisis of the 1970s and more recently galvanized due to climate concerns arising from the ongoing release of anthropogenic carbon. Addressing the problem of atmospheric carbon accumulation requires effort in two very broad areas: capture and conversion. Storage is an alternative to conversion, but this eliminates the opportunity to use what might be otherwise a waste product. Our group has investigated a series of modified versions of iron(III)-5,10,15,20-tetraphenylporphyrin (FeTPP) that can convert CO2 to carbon monoxide, which is a versatile and useful precursor for other syntheses. Following pioneering work from Savéant and his colleagues in the 1990s and thereafter, we started with a simple question: how many pendent ancillary groups that can donate H-bonds or protons are needed to support efficient CO2-to-CO conversion? Using a molecule with only one 2-hydroxylphenyl group, we demonstrated that the single prepositioned -OH group gave rise to efficient turnover, but only when experiments were carried out in a weakly H-bond-accepting solvent system. In other words, the ability of a solvent to accept H-bonds can impede CO2 reduction. We followed up with a deeper investigation of the influence of H-bonding interactions with external acids in FeTPP-mediated CO2 reduction. Savéant's framework mechanism appears to be independent of solvent, and rate differences can be approximated by considering H-bonding equilibria. Following that work, we sought to better understand the minimum catalyst design requirements with respect to internal H-bond/proton donors. To that end, we produced all possible isomers of tetraarylpoprhyrins with 2,6-dihydroxyphenyl + phenyl groups. All else being equal, the complexes with a formally trans orientation of the 2,6-dihydroxyphenyl groups performed the best. Most recently, we surveyed the roles of internal and external Brønsted acids with different pKa values. Surprisingly, the best-performing catalysts have more weakly acidic internal groups. Overall, our work has demonstrated that CO2 reduction mediated by porphyrin catalysts can be improved by considering solvent H-bonding, the orientation of internal H-bonding groups, and the balance of the pKa values of internal and external acids. The future for molecular electrocatalysts is promising as more ideas emerge about how to design molecules and conditions for CO2 reduction.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
4
|
Cruz Neto DH, Pugliese E, Gotico P, Quaranta A, Leibl W, Steenkeste K, Peláez D, Pino T, Halime Z, Ha-Thi MH. Time-Resolved Mechanistic Depiction of Photoinduced CO 2 Reduction Catalysis on a Urea-Modified Iron Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202407723. [PMID: 38781123 DOI: 10.1002/anie.202407723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The development of functional artificial photosynthetic devices relies on the understanding of mechanistic aspects involved in specialized photocatalysts. Modified iron porphyrins have long been explored as efficient catalysts for the light-induced reduction of carbon dioxide (CO2) towards solar fuels. In spite of the advancements in homogeneous catalysis, the development of the next generation of catalysts requires a complete understanding of the fundamental photoinduced processes taking place prior to and after activation of the substrate by the catalyst. In this work, we employ a state-of-the-art nanosecond optical transient absorption spectroscopic setup with a double excitation capability to induce charge accumulation and trigger the reduction of CO2 to carbon monoxide (CO). Our biomimetic system is composed of a urea-modified iron(III) tetraphenylporphyrin (UrFeIII) catalyst, the prototypical [Ru(bpy)3]2+ (bpy=2,2'-bipyridine) used as a photosensitizer, and sodium ascorbate as an electron donor. Under inert atmosphere, we show that two electrons can be successively accumulated on the catalyst as the fates of the photogenerated UrFeII and UrFeI reduced species are tracked. In the presence of CO2, the catalytic cycle is kick-started providing further evidence on CO2 activation by the UrFe catalyst in its formal FeI oxidation state.
Collapse
Affiliation(s)
- Daniel H Cruz Neto
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Eva Pugliese
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Annamaria Quaranta
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Thomas Pino
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Zakaria Halime
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| |
Collapse
|
5
|
Yang Y, Xie F, Chen J, Qiu S, Qiang N, Lu M, Peng Z, Yang J, Liu G. Electrocatalytic Reduction of CO 2 to CO by Molecular Cobalt-Polypyridine Diamine Complexes. Molecules 2024; 29:1694. [PMID: 38675514 PMCID: PMC11051790 DOI: 10.3390/molecules29081694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Cobalt complexes have previously been reported to exhibit high faradaic efficiency in reducing CO2 to CO. Herein, we synthesized capsule-like cobalt-polypyridine diamine complexes [Co(L1)](BF4)2 (1) and [Co(L2) (CH3CN)](BF4)2 (2) as catalysts for the electrocatalytic reduction of CO2. Under catalytic conditions, complexes 1 and 2 demonstrated the electrocatalytic reduction of CO2 to CO in the presence or absence of CH3OH as a proton source. Experimental and computational studies revealed that complexes 1 and 2 undergo two consecutive reversible one-electron reductions on the cobalt core, followed by the addition of CO2 to form a metallocarboxylate intermediate [CoII(L)-CO22-]0. This crucial reaction intermediate, which governs the catalytic cycle, was successfully detected using high resolution mass spectrometry (HRMS). In situ Fourier-transform infrared spectrometer (FTIR) analysis showed that methanol can enhance the rate of carbon-oxygen bond cleavage of the metallocarboxylate intermediate. DFT studies on [CoII(L)-CO22-]0 have suggested that the doubly reduced species attacks CO2 on the C atom through the dz2 orbital, while the interaction with CO2 is further stabilized by the π interaction between the metal dxz or dxz orbital with p orbitals on the O atoms. Further reductions generate a metal carbonyl intermediate [CoI(L)-CO]+, which ultimately releases CO.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| | - Fang Xie
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| | - Jiahui Chen
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| | - Si Qiu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| | - Na Qiang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| | - Ming Lu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| | - Zhongli Peng
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516001, China; (F.X.); (J.C.); (S.Q.); (N.Q.); (M.L.); (Z.P.); (G.L.)
| |
Collapse
|
6
|
Nguyen BX, Sonea A, Warren JJ. Further Understanding the Roles of Solvent, Brønsted Acids, and Hydrogen Bonding in Iron Porphyrin-Mediated Carbon Dioxide Reduction. Inorg Chem 2023; 62:17602-17611. [PMID: 37847220 DOI: 10.1021/acs.inorgchem.3c01855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Improving our understanding of how molecules and materials mediate the electrochemical reduction of carbon dioxide (CO2) to upgraded products is of great interest as a means to address climate change. A leading class of molecules that can facilitate the electrochemical conversion of CO2 to carbon monoxide (CO) is iron porphyrins. These molecules can have high rate constants for CO2-to-CO conversion; they are robust, and they rely on abundant and inexpensive synthetic building blocks. Important foundational work has been conducted using chloroiron 5,10,15,20-tetraphenylporphyrin (FeTPPCl) in N,N-dimethylformamide (DMF) solvent. A related and recent report points out that the corresponding perchlorate complex, FeTPPClO4, can have superior function due to its solubility in other organic solvents. However, the importance of hydrogen bonding and solvent effects was not discussed. Herein, we present a detailed kinetic study of the triflate (CF3SO3-) complex of FeTPP in DMF and in MeCN using a range of phenol Brønsted acid additives. We also detected the formation of Fe(III)TPP-phenolate complexes using cyclic voltammetry experiments. Importantly, our new analysis of apparent rate constants with different added phenols allows for a modification to the established mechanistic model for CO2-to-CO conversion. Critically, our improved model accounts for hydrogen bonding and solvent effects by using simple hydrogen bond acidity and basicity descriptors. We use this augmented model to rationalize function in other reported porphyrin systems and to make predictions about operational conditions that can enhance the CO2 reduction chemistry.
Collapse
Affiliation(s)
- Bach Xuan Nguyen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|
7
|
Ren Z, Zhao B, Xie J. Designing N-Confused Metalloporphyrin-Based Covalent Organic Frameworks for Enhanced Electrocatalytic Carbon Dioxide Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301818. [PMID: 37010014 DOI: 10.1002/smll.202301818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical conversion of carbon dioxide (CO2 ) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN4 -Por-COFs) provide a platform for rational design of electrocatalyst for CO2 reduction reaction (CO2 RR). Herein, through systematic quantum-chemical studies, the N-confused metallo-Por-COFs are reported as novel catalysts for CO2 RR. For MN4 -Por-COFs, among the ten 3d metals, M = Co/Cr stands out in catalyzing CO2 RR to CO or HCOOH; hence, N-confused Por-COFs with Co/CrN3 C1 and Co/CrN2 C2 centers are designed. Calculations indicate CoNx Cy -Por-COFs exhibit lower limiting potential (-0.76 and -0.60 V) for CO2 -to-CO reduction than its parent CoN4 -Por-COFs (-0.89 V) and make it feasible to yield deep-reduction degree C1 products CH3 OH and CH4 . Electronic structure analysis reveals that substituting CoN4 to CoN3 C1 /CoN2 C2 increases the electron density on Co-atom and raises the d-band center, thus stabilizing the key intermediates of the potential determining step and lowering the limiting potential. For similar reason, changing the core from CrN4 to CrN3 C1 /CrN2 C2 lowers the limiting potential for CO2 -to-HCOOH reduction. This work predicts N-confused Co/CrNx Cy -Por-COFs to be high-performance CO2 RR catalyst candidates. Inspiringly, as a proof-of-concept study, it provides an alternative strategy for coordination regulation and theoretical guidelines for rational design of catalysts.
Collapse
Affiliation(s)
- Zhixin Ren
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
8
|
Gotico P, Halime Z, Leibl W, Aukauloo A. Bimetallic Molecular Catalyst Design for Carbon Dioxide Reduction. Chempluschem 2023; 88:e202300222. [PMID: 37466131 DOI: 10.1002/cplu.202300222] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.
Collapse
Affiliation(s)
- Philipp Gotico
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Zakaria Halime
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Winfried Leibl
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Ally Aukauloo
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| |
Collapse
|
9
|
CO2 Electroreduction on Carbon-Based Electrodes Functionalized with Molecular Organometallic Complexes—A Mini Review. Catalysts 2022. [DOI: 10.3390/catal12111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterogeneous electrochemical CO2 reduction has potential advantages with respect to the homogeneous counterpart due to the easier recovery of products and catalysts, the relatively small amounts of catalyst necessary for efficient electrolysis, the longer lifetime of the catalysts, and the elimination of solubility problems. Unfortunately, several disadvantages are also present, including the difficulty of designing the optimized and best-performing catalysts by the appropriate choice of the ligands as well as a larger heterogeneity in the nature of the catalytic site that introduces differences in the mechanistic pathway and in electrogenerated products. The advantages of homogeneous and heterogeneous systems can be preserved by anchoring intact organometallic molecules on the electrode surface with the aim of increasing the dispersion of active components at a molecular level and facilitating the electron transfer to the electrocatalyst. Electrode functionalization can be obtained by non-covalent or covalent interactions and by direct electropolymerization on the electrode surface. A critical overview covering the very recent literature on CO2 electroreduction by intact organometallic complexes attached to the electrode is summarized herein, and particular attention is given to their catalytic performances. We hope this mini review can provide new insights into the development of more efficient CO2 electrocatalysts for real-life applications.
Collapse
|
10
|
Advances of Cobalt Phthalocyanine in Electrocatalytic CO2 Reduction to CO: a Mini Review. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Derrick JS, Loipersberger M, Nistanaki SK, Rothweiler AV, Head-Gordon M, Nichols EM, Chang CJ. Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO 2 Reduction Catalyzed by Iron Porphyrins. J Am Chem Soc 2022; 144:11656-11663. [PMID: 35749266 DOI: 10.1021/jacs.2c02972] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bicarbonate-based electrolytes are ubiquitous in aqueous electrochemical CO2 reduction, particularly in heterogenous catalysis, where they demonstrate improved catalytic performance relative to other buffers. In contrast, the presence of bicarbonate in organic electrolytes and its roles in homogeneous electrocatalysis remain underexplored. Here, we investigate the influence of bicarbonate on iron porphyrin-catalyzed electrochemical CO2 reduction. We show that bicarbonate is a viable proton donor in organic electrolyte (pKa = 20.8 in dimethyl sulfoxide) and that urea pendants in the second coordination sphere can be used to template bicarbonate in the vicinity of a molecular iron porphyrin catalyst. The templated binding of bicarbonate increases its acidity, resulting in a 1500-fold enhancement in catalytic rates relative to unmodified parent iron porphyrin. This work emphasizes the importance of bicarbonate speciation in wet organic electrolytes and establishes second-sphere bicarbonate templating as a design strategy to harness this adventitious acid and enhance CO2 reduction catalysis.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sepand K Nistanaki
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Aila V Rothweiler
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eva M Nichols
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Lin Z, Jiang Z, Yuan Y, Li H, Wang H, Tang Y, Liu C, Liang Y. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63880-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Gotico P, Leibl W, Halime Z, Aukauloo A. Shaping the Electrocatalytic Performance of Metal Complexes for CO
2
Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Philipp Gotico
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Current Affiliation: Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Winfried Leibl
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Zakaria Halime
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| | - Ally Aukauloo
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| |
Collapse
|
14
|
Nganga J, Chaudhri N, Brückner C, Angeles-Boza AM. β-Oxochlorin cobalt(II) complexes catalyze the electrochemical reduction of CO 2. Chem Commun (Camb) 2021; 57:4396-4399. [PMID: 33949479 DOI: 10.1039/d1cc00573a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inspired by the architecture of the macrocycle of heme d1, a series of synthetic mono-, di- and tri-β-oxo-substituted porphyrinoid cobalt(ii) complexes were evaluated as electrocatalytic CO2 reducers, identifying complexes of unusually high efficiencies in generating multi-electron reduction products, including CH4.
Collapse
Affiliation(s)
- John Nganga
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA.
| | - Nivedita Chaudhri
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA.
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA.
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, USA. and Institute of Materials Science, University of Connecticut, 97 N. Eagleville Road, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Khadhraoui A, Gotico P, Leibl W, Halime Z, Aukauloo A. Through-Space Electrostatic Interactions Surpass Classical Through-Bond Electronic Effects in Enhancing CO 2 Reduction Performance of Iron Porphyrins. CHEMSUSCHEM 2021; 14:1308-1315. [PMID: 33387402 DOI: 10.1002/cssc.202002718] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In his pioneering work to unravel the catalytic power of enzymes, Warshel has pertinently validated that electrostatic interactions play a major role in the activation of substrates. Implementing such chemical artifice in molecular catalysts may help improve their catalytic properties. In this study, a series of tetra-, di-, and mono-substituted iron porphyrins with cationic imidazolium groups were designed. Their presence in the second coordination sphere helped stabilize the [Fe-CO2 ] intermediate through electrostatic interactions. It was found herein that the electrocatalytic overpotential is a function of the number of embarked imidazolium. Importantly, a gain of six orders of magnitude in turnover frequencies was observed going from a tetra- to a mono-substituted catalyst. Furthermore, the comparative study showed that catalytic performances trend of through-space electrostatic interaction, a first topological effect reported for iron porphyrins, outperforms the classical through-structure electronic effect.
Collapse
Affiliation(s)
- Asma Khadhraoui
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91405, Orsay, France
| | - Philipp Gotico
- Université Paris-Saclay, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Winfried Leibl
- Université Paris-Saclay, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91405, Orsay, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91405, Orsay, France
- Université Paris-Saclay, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Zhang R, Warren JJ. Recent Developments in Metalloporphyrin Electrocatalysts for Reduction of Small Molecules: Strategies for Managing Electron and Proton Transfer Reactions. CHEMSUSCHEM 2021; 14:293-302. [PMID: 33064354 DOI: 10.1002/cssc.202001914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Porphyrins are archetypal ligands in inorganic chemistry. The last 10 years have seen important new advances in the use of metalloporphyrins as catalysts in the activation and reduction of small molecules, in particular O2 and CO2 . Recent developments of new molecular designs, scaling relationships, and theoretical modeling of mechanisms have rapidly advanced the utility of porphyrins as electrocatalysts. This Minireview focuses on the summary and evaluation of recent developments of metalloporphyrin O2 and CO2 reduction electrocatalysts, with an emphasis on contrasting homogeneous and heterogeneous electrocatalysis. Comparisons for proposed reaction mechanisms are provided for both CO2 and O2 reduction, and ideas are proposed about how lessons from the last decade of research can lead to the development of practical, applied porphyrin-derived catalysts.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCV5A1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCV5A1S6, Canada
| |
Collapse
|
17
|
Liang Z, Wang HY, Zheng H, Zhang W, Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem Soc Rev 2021; 50:2540-2581. [DOI: 10.1039/d0cs01482f] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education, School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an 710119
- China
| |
Collapse
|
18
|
Wang Y, Su H, He Y, Li L, Zhu S, Shen H, Xie P, Fu X, Zhou G, Feng C, Zhao D, Xiao F, Zhu X, Zeng Y, Shao M, Chen S, Wu G, Zeng J, Wang C. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chem Rev 2020; 120:12217-12314. [DOI: 10.1021/acs.chemrev.0c00594] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuxuan Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongyang Su
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yanghua He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Hao Shen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Pengfei Xie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xianbiao Fu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Guangye Zhou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chen Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dengke Zhao
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong P. R. China
| | - Xiaojing Zhu
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510007, China
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Minhua Shao
- Department of Chemical and Biological Engineering, Energy Institute, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong P. R. China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
Sinha S, Zhang R, Warren JJ. Low Overpotential CO2 Activation by a Graphite-Adsorbed Cobalt Porphyrin. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Rui Zhang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
20
|
Atropisomeric Hydrogen Bonding Control for CO
2
Binding and Enhancement of Electrocatalytic Reduction at Iron Porphyrins. Angew Chem Int Ed Engl 2020; 59:22451-22455. [DOI: 10.1002/anie.202010859] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 11/07/2022]
|
21
|
Gotico P, Roupnel L, Guillot R, Sircoglou M, Leibl W, Halime Z, Aukauloo A. Atropisomeric Hydrogen Bonding Control for CO
2
Binding and Enhancement of Electrocatalytic Reduction at Iron Porphyrins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Philipp Gotico
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
- Université Paris-Saclay CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Loïc Roupnel
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Regis Guillot
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Marie Sircoglou
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Winfried Leibl
- Université Paris-Saclay CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Zakaria Halime
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
| | - Ally Aukauloo
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay 91405 Orsay France
- Université Paris-Saclay CEA, CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| |
Collapse
|
22
|
Delafontaine L, Asset T, Atanassov P. Metal-Nitrogen-Carbon Electrocatalysts for CO 2 Reduction towards Syngas Generation. CHEMSUSCHEM 2020; 13:1688-1698. [PMID: 31961996 DOI: 10.1002/cssc.201903281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Shifting syngas (an H2 /CO mixture) production away from fossil-fuel-dependent processes (e.g., steam methane reforming and coal gasification) is mandatory, as syngas is of interest as both a fuel and as a value-added chemical precursor. With appropriate electrocatalysts, such as silver-based and metal-nitrogen-carbon (M-N-C) materials, the electrochemical CO2 reduction reaction (CO2 RR) allows for the production of CO alongside H2 (from the hydrogen evolution reaction), and thus leads to syngas generation. In this Minireview, the application of M-N-C electrocatalysts for syngas generation is discussed. The mechanisms leading to different faradaic selectivities for CO are reviewed as a function of the nature of the metal, by using both computational and experimental approaches. The role played by the metal-free moieties in the M-N-C electrocatalysts is underlined. Since M-N-C electrocatalysts only recently entered the CO2 RR field (as opposed to Cu-, Ag-, or Au-based nanostructures), they have been mainly characterized in static liquid environments, in which the reaction rate is significantly hampered by CO2 -dissolution/diffusion limitations. Therefore, the design of CO2 RR electrolyzers for M-N-C electrocatalysts is addressed, and designs such as zero-gap electrolyzers with anionic membranes and humidified CO2 gas feed at the cathode are highlighted.
Collapse
Affiliation(s)
- Laurent Delafontaine
- Chemical & Biomolecular Engineering and National Fuel Cell Research Center, University of California, Irvine, CA, 92697-2580, USA
| | - Tristan Asset
- Chemical & Biomolecular Engineering and National Fuel Cell Research Center, University of California, Irvine, CA, 92697-2580, USA
| | - Plamen Atanassov
- Chemical & Biomolecular Engineering and National Fuel Cell Research Center, University of California, Irvine, CA, 92697-2580, USA
| |
Collapse
|
23
|
Gotico P, Halime Z, Aukauloo A. Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Trans 2020; 49:2381-2396. [PMID: 32040100 DOI: 10.1039/c9dt04709c] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research in the development of new molecular catalysts for the selective transformation of CO2 to reduced forms of carbon is attracting enormous interest from chemists. Molecular catalyst design hinges on the elaboration of ligand scaffolds to manipulate the electronic and structural properties for the fine tuning of the reactivity pattern. A cornucopia of ligand sets have been designed along this line and more and more are being reported. In this quest, the porphyrin molecular platform has been under intensive focus due to the unmatched catalytic properties of metalloporphyrins. There have been rapid advances in this particular field during the last few years wherein both electronic and structural aspects in the second coordination spheres have been addressed to shift the overpotential and improve the catalytic rates and product selectivity. Metalloporphyrins have also attracted much attention in terms of the elaboration of hybrid materials for heterogeneous catalysis. Here too, some promising activities have made metalloporphyrin derivatives serious candidates for technological implementation. This review collects the recent advances centred around the chemistry of metalloporphyrins for the reduction of CO2.
Collapse
Affiliation(s)
- Philipp Gotico
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut des Sciences du Vivant Frédéric-Joliot, CEA Saclay, Gif-sur-Yvette 91191, France.
| | - Zakaria Halime
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Sud, Orsay 91405, France
| | - Ally Aukauloo
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut des Sciences du Vivant Frédéric-Joliot, CEA Saclay, Gif-sur-Yvette 91191, France. and Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Sud, Orsay 91405, France
| |
Collapse
|
24
|
Asset T, Garcia ST, Herrera S, Andersen N, Chen Y, Peterson EJ, Matanovic I, Artyushkova K, Lee J, Minteer SD, Dai S, Pan X, Chavan K, Calabrese Barton S, Atanassov P. Investigating the Nature of the Active Sites for the CO2 Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01513] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tristan Asset
- Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center (NFCRC), University of California, Irvine, California 92697, United States
| | - Samuel T. Garcia
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Sergio Herrera
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Nalin Andersen
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yechuan Chen
- Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center (NFCRC), University of California, Irvine, California 92697, United States
| | - Eric J. Peterson
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ivana Matanovic
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kateryna Artyushkova
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jack Lee
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sheng Dai
- Department of Materials Science & Engineering, Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Xiaoqing Pan
- Department of Materials Science & Engineering, Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
- Irvine Materials Research Institute (IMRI), University of California, Irvine, California 92697, United States
| | - Kanchan Chavan
- Department of Chemical & Materials Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Scott Calabrese Barton
- Department of Chemical & Materials Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Plamen Atanassov
- Department of Chemical & Biomolecular Engineering, National Fuel Cell Research Center (NFCRC), University of California, Irvine, California 92697, United States
- Department of Chemical & Biological Engineering, Center for Micro-Engineered Materials (CMEM), University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
25
|
Dalle K, Warnan J, Leung JJ, Reuillard B, Karmel IS, Reisner E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019; 119:2752-2875. [PMID: 30767519 PMCID: PMC6396143 DOI: 10.1021/acs.chemrev.8b00392] [Citation(s) in RCA: 455] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/31/2022]
Abstract
The synthesis of renewable fuels from abundant water or the greenhouse gas CO2 is a major step toward creating sustainable and scalable energy storage technologies. In the last few decades, much attention has focused on the development of nonprecious metal-based catalysts and, in more recent years, their integration in solid-state support materials and devices that operate in water. This review surveys the literature on 3d metal-based molecular catalysts and focuses on their immobilization on heterogeneous solid-state supports for electro-, photo-, and photoelectrocatalytic synthesis of fuels in aqueous media. The first sections highlight benchmark homogeneous systems using proton and CO2 reducing 3d transition metal catalysts as well as commonly employed methods for catalyst immobilization, including a discussion of supporting materials and anchoring groups. The subsequent sections elaborate on productive associations between molecular catalysts and a wide range of substrates based on carbon, quantum dots, metal oxide surfaces, and semiconductors. The molecule-material hybrid systems are organized as "dark" cathodes, colloidal photocatalysts, and photocathodes, and their figures of merit are discussed alongside system stability and catalyst integrity. The final section extends the scope of this review to prospects and challenges in targeting catalysis beyond "classical" H2 evolution and CO2 reduction to C1 products, by summarizing cases for higher-value products from N2 reduction, C x>1 products from CO2 utilization, and other reductive organic transformations.
Collapse
Affiliation(s)
| | | | - Jane J. Leung
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Bertrand Reuillard
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Isabell S. Karmel
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Erwin Reisner
- Christian Doppler Laboratory
for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Chen C, Sun X, Yang D, Lu L, Wu H, Zheng L, An P, Zhang J, Han B. Enhanced CO 2 electroreduction via interaction of dangling S bonds and Co sites in cobalt phthalocyanine/ZnIn 2S 4 hybrids. Chem Sci 2019; 10:1659-1663. [PMID: 30842829 PMCID: PMC6368213 DOI: 10.1039/c8sc03986k] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/24/2018] [Indexed: 11/21/2022] Open
Abstract
The efficient electrochemical reduction of CO2 to CO in aqueous electrolyte is very interesting. Due to the critical electron-transfer step during the activation of CO2, it is important to design efficient strategies to engineer the electronic properties of catalysts to improve the electrochemical performance. Herein cobalt phthalocyanine (CoPc) supported on ZnIn2S4 (ZIS) nanosheets was synthesized. It was found that the hybrids showed excellent performance for CO2 electroreduction to CO in aqueous solution. The faradaic efficiency, current density and mass activity could reach 93%, 8 mA cm-2 and 266 mA mg(CoPc) -1, respectively. Introduction of Zn-defects resulted in dangling S bonds in the ZIS support, which interacted with Co active sites of CoPc via strong Co-S interaction. Mechanistic studies revealed that the enhancement of CO production over CoPc by Co-S interaction originated from the eased CO2 activation.
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences , CAS Key Laboratory of Colloid and Interface and Thermodynamics , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China . ;
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences , CAS Key Laboratory of Colloid and Interface and Thermodynamics , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China . ;
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dexin Yang
- Beijing National Laboratory for Molecular Sciences , CAS Key Laboratory of Colloid and Interface and Thermodynamics , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China . ;
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Lu Lu
- Beijing National Laboratory for Molecular Sciences , CAS Key Laboratory of Colloid and Interface and Thermodynamics , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China . ;
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes , School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , China
| | - Lirong Zheng
- Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Pengfei An
- Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Jing Zhang
- Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences , CAS Key Laboratory of Colloid and Interface and Thermodynamics , CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China . ;
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
27
|
Jiang C, Nichols AW, Machan CW. A look at periodic trends in d-block molecular electrocatalysts for CO2 reduction. Dalton Trans 2019; 48:9454-9468. [DOI: 10.1039/c9dt00491b] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periodic trends in the electronic structure of the transition metal centers can be used to explain the observed CO2 reduction activities in molecular electrocatalysts for CO2 reductions. Research activities concerning both horizontal and vertical trends have been summarized with mononuclear complexes from Group 6 to Group 10.
Collapse
Affiliation(s)
| | - Asa W. Nichols
- Department of Chemistry
- University of Virginia
- Charlottesville
- USA
| | | |
Collapse
|
28
|
Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Dey S, Ahmed ME, Dey A. Activation of Co(I) State in a Cobalt-Dithiolato Catalyst for Selective and Efficient CO 2 Reduction to CO. Inorg Chem 2018; 57:5939-5947. [PMID: 29714479 DOI: 10.1021/acs.inorgchem.8b00450] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduction of CO2 holds the key to solving two major challenges taunting the society-clean energy and clean environment. There is an urgent need for the development of efficient non-noble metal-based catalysts that can reduce CO2 selectively and efficiently. Unfortunately, activation and reduction of CO2 can only be achieved by highly reduced metal centers jeopardizing the energy efficiency of the process. A carbon monoxide dehydrogenase inspired Co complex bearing a dithiolato ligand can reduce CO2, in wet acetonitrile, to CO with ∼95% selectivity over a wide potential range and 1559 s-1 rate with a remarkably low overpotential of 70 mV. Unlike most of the transition-metal-based systems that require reduction of the metal to its formal zerovalent state for CO2 reduction, this catalyst can reduce CO2 in its formal +1 state making it substantially more energy efficient than any system known to show similar reactivity. While covalent donation from one thiolate increases electron density at the Co(I) center enabling it to activate CO2, protonation of the bound thiolate, in the presence of H2O as a proton source, plays a crucial role in lowering overpotential (thermodynamics) and ensuring facile proton transfer to the bound CO2 ensuring facile (kinetics) reactivity. A very covalent Co(III)-C bond in a Co(III)-COOH intermediate is at the heart of selective protonation of the oxygen atoms to result in CO as the exclusive product of the reduction.
Collapse
Affiliation(s)
- Subal Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Md Estak Ahmed
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| | - Abhishek Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata 700032 , India
| |
Collapse
|
30
|
Nichols EM, Derrick JS, Nistanaki SK, Smith PT, Chang CJ. Positional effects of second-sphere amide pendants on electrochemical CO 2 reduction catalyzed by iron porphyrins. Chem Sci 2018; 9:2952-2960. [PMID: 29732079 PMCID: PMC5915798 DOI: 10.1039/c7sc04682k] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input. Inspired by natural bioinorganic systems that feature precisely positioned hydrogen-bond donors in the secondary coordination sphere to direct chemical transformations occurring at redox-active metal centers, we now report the design, synthesis, and characterization of a series of iron tetraphenylporphyrin (Fe-TPP) derivatives bearing amide pendants at various positions at the periphery of the metal core. Proper positioning of the amide pendants greatly affects the electrocatalytic activity for carbon dioxide reduction to carbon monoxide. In particular, derivatives bearing proximal and distal amide pendants on the ortho position of the phenyl ring exhibit significantly larger turnover frequencies (TOF) compared to the analogous para-functionalized amide isomers or unfunctionalized Fe-TPP. Analysis of TOF as a function of catalyst standard reduction potential enables first-sphere electronic effects to be disentangled from second-sphere through-space interactions, suggesting that the ortho-functionalized porphyrins can utilize the latter second-sphere property to promote CO2 reduction. Indeed, the distally-functionalized ortho-amide isomer shows a significantly larger through-space interaction than its proximal ortho-amide analogue. These data establish that proper positioning of secondary coordination sphere groups is an effective design element for breaking electronic scaling relationships that are often observed in electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Eva M Nichols
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Jeffrey S Derrick
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Sepand K Nistanaki
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
| | - Peter T Smith
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Christopher J Chang
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
- Department of Molecular and Cell Biology , University of California , Berkeley , CA 94720 , USA
- Howard Hughes Medical Institute , University of California , Berkeley , CA 94720 , USA
| |
Collapse
|
31
|
Highly selective and active CO 2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun 2017; 8:14675. [PMID: 28272403 PMCID: PMC5344970 DOI: 10.1038/ncomms14675] [Citation(s) in RCA: 364] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/18/2017] [Indexed: 12/23/2022] Open
Abstract
Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm−2 and a turnover frequency of 4.1 s−1 at the overpotential of 0.52 V in a near-neutral aqueous solution. Electrochemical reduction of carbon dioxide is a sustainable way of producing carbon-neutral fuels. Here, the authors take a combined nanoscale and molecular approach to develop a highly active and selective cobalt phthalocyanine/carbon nanotube hybrid electrocatalyst for carbon dioxide reduction to carbon monoxide.
Collapse
|
32
|
Zhu G, Li Y, Zhu H, Su H, Chan SH, Sun Q. Curvature-Dependent Selectivity of CO2 Electrocatalytic Reduction on Cobalt Porphyrin Nanotubes. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02020] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guizhi Zhu
- Singapore-Peking University Research Centre, Campus for Research Excellence & Technological Enterprise (CREATE), Singapore 138602
- Department
of Materials Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yawei Li
- Singapore-Peking University Research Centre, Campus for Research Excellence & Technological Enterprise (CREATE), Singapore 138602
- Department
of Materials Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Haiyan Zhu
- Singapore-Peking University Research Centre, Campus for Research Excellence & Technological Enterprise (CREATE), Singapore 138602
- Institute
of Modern Physics, Northwest University, Xi’an 710069, People’s Republic of China
| | - Haibin Su
- Singapore-Peking University Research Centre, Campus for Research Excellence & Technological Enterprise (CREATE), Singapore 138602
- School
of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Siew Hwa Chan
- Singapore-Peking University Research Centre, Campus for Research Excellence & Technological Enterprise (CREATE), Singapore 138602
- School
of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Qiang Sun
- Singapore-Peking University Research Centre, Campus for Research Excellence & Technological Enterprise (CREATE), Singapore 138602
- Department
of Materials Science and Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
33
|
Dreyse P, Honores J, Quezada D, Isaacs M. Electrocatalytic Transformation of Carbon Dioxide into Low Carbon Compounds on Conducting Polymers Derived from Multimetallic Porphyrins. CHEMSUSCHEM 2015; 8:3897-3904. [PMID: 26383015 DOI: 10.1002/cssc.201500816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/04/2015] [Indexed: 06/05/2023]
Abstract
The electrochemical reduction of carbon dioxide is studied herein by using conducting polymers based on metallotetraruthenated porphyrins (MTRPs). The polymers on glassy carbon electrodes were obtained by electropolymerization processes of the monomeric MTRP. The linear sweep voltammetry technique resulted in polymeric films that showed electrocatalytic activity toward carbon dioxide reduction with an onset potential of -0.70 V. The reduction products obtained were hydrogen, formic acid, formaldehyde, and methanol, with a tendency for a high production of methanol with a maximum value of turnover frequency equal to 15.07 when using a zinc(II) polymeric surface. Studies of the morphology (AFM) and electrochemical impedance spectroscopy results provide an adequate background to explain that the electrochemical reduction is governed by the roughness of the polymer, for which the possible mechanism involves a series of one-electron reduction reactions.
Collapse
Affiliation(s)
- Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaiso, Chile
| | - Jessica Honores
- Facultad de Química, Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Diego Quezada
- Facultad de Química, Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Mauricio Isaacs
- Facultad de Química, Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
34
|
Manbeck GF, Fujita E. A review of iron and cobalt porphyrins, phthalocyanines and related complexes for electrochemical and photochemical reduction of carbon dioxide. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615300013] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review summarizes research on the electrochemical and photochemical reduction of CO 2 using a variety of iron and cobalt porphyrins, phthalocyanines and related complexes. Metalloporphyrins and metallophthalocyanines are visible light absorbers with extremely large extinction coefficients. However, yields of photochemically-generated active catalysts for CO 2 reduction are typically low owing to the requirement of a second photoinduced electron. This requirement is not relevant to the case of electrochemical CO 2 reduction. Recent progress on efficient and stable electrochemical systems includes the use of FeTPP catalysts that have prepositioned phenyl OH groups in their second coordination spheres. This has led to remarkable progress in carrying out coupled proton-electron transfer reactions for CO 2 reduction. Such ground-breaking research has to be continued in order to produce renewable fuels in an economically feasible manner.
Collapse
Affiliation(s)
- Gerald F. Manbeck
- Chemistry Department, Brookhaven National Laboratory, Upton NY 11973, USA
| | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton NY 11973, USA
| |
Collapse
|
35
|
Sirbu D, Turta C, Gibson EA, Benniston AC. The ferrocene effect: enhanced electrocatalytic hydrogen production using meso-tetraferrocenyl porphyrin palladium(ii) and copper(ii) complexes. Dalton Trans 2015. [DOI: 10.1039/c5dt02191j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) and palladium(ii) meso-tetraferrocenylporphyrins (CuTFcP and PdTFcP) were employed as catalysts for electrochemical proton reduction in DMF using trifluoroacetic acid (TFA) or triethylamine hydrochloride (TEAHCl) as acids.
Collapse
Affiliation(s)
- D. Sirbu
- Institute of Chemistry
- Academy of Sciences of Moldova
- Chisinau
- Republic of Moldova
| | - C. Turta
- Institute of Chemistry
- Academy of Sciences of Moldova
- Chisinau
- Republic of Moldova
| | - E. A. Gibson
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
- UK
| | - A. C. Benniston
- School of Chemistry
- Newcastle University
- Newcastle upon Tyne
- UK
| |
Collapse
|
36
|
Rosenthal J. Progress Toward the Electrocatalytic Production of Liquid Fuels from Carbon Dioxide. PROGRESS IN INORGANIC CHEMISTRY: VOLUME 59 2014. [DOI: 10.1002/9781118869994.ch04] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Qiao J, Liu Y, Hong F, Zhang J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 2014; 43:631-75. [PMID: 24186433 DOI: 10.1039/c3cs60323g] [Citation(s) in RCA: 1426] [Impact Index Per Article: 129.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper reviews recent progress made in identifying electrocatalysts for carbon dioxide (CO2) reduction to produce low-carbon fuels, including CO, HCOOH/HCOO(-), CH2O, CH4, H2C2O4/HC2O4(-), C2H4, CH3OH, CH3CH2OH and others. The electrocatalysts are classified into several categories, including metals, metal alloys, metal oxides, metal complexes, polymers/clusters, enzymes and organic molecules. The catalyts' activity, product selectivity, Faradaic efficiency, catalytic stability and reduction mechanisms during CO2 electroreduction have received detailed treatment. In particular, we review the effects of electrode potential, solution-electrolyte type and composition, temperature, pressure, and other conditions on these catalyst properties. The challenges in achieving highly active and stable CO2 reduction electrocatalysts are analyzed, and several research directions for practical applications are proposed, with the aim of mitigating performance degradation, overcoming additional challenges, and facilitating research and development in this area.
Collapse
Affiliation(s)
- Jinli Qiao
- College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | | | | | | |
Collapse
|
38
|
Xi-Zhang C, Ying M, Mao-Lian W, Li L. The electrocatalytic reduction of carbon dioxide using cobalt tetrakis (4-trimethylammoniophenyl) porphyrin under high pressure. ACTA CHIMICA SINICA 2010. [DOI: 10.1002/cjoc.19860040205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Tinnemans AHA, Koster TPM, Thewissen DHMW, Mackor A. Tetraaza-macrocyclic cobalt(II) and nickel(II) complexes as electron-transfer agents in the photo(electro)chemical and electrochemical reduction of carbon dioxide. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19841031004] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Electrocatalytic Reduction of Carbon Dioxide by Cobalt-Phthalocyanine-Incorporated Polypyrrole. ACTA ACUST UNITED AC 2009. [DOI: 10.1149/1.3139529] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Pun SN, Chung WH, Lam KM, Guo P, Chan PH, Wong KY, Che CM, Chen TY, Peng SM. Iron(i) complexes of 2,9-bis(2-hydroxyphenyl)-1,10-phenanthroline (H2dophen) as electrocatalysts for carbon dioxide reduction. X-Ray crystal structures of [Fe(dophen)Cl]2·2HCON(CH3)2 and [Fe(dophen)(N-MeIm)2]ClO4 (N-MeIm = 1-methylimidazole). ACTA ACUST UNITED AC 2002. [DOI: 10.1039/b108472k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Bernhardt PV, Jones LA. Electrochemistry of Macrocyclic Cobalt(III/II) Hexaamines: Electrocatalytic Hydrogen Evolution in Aqueous Solution. Inorg Chem 1999; 38:5086-5090. [PMID: 11671255 DOI: 10.1021/ic981425d] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The macrocyclic cobalt hexaamines [Co(trans-diammac)](3+) and [Co(cis-diammac)](3+) (diammac = 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) are capable of reducing the overpotential for hydrogen evolution on a mercury cathode in aqueous solution. Protons are reduced in a catalytic process involving reoxidation of the Co(II) species to its parent Co(III) complex. The cycle is robust at neutral pH with no decomposition of catalyst. The stability of the [Co(trans-diammac)](2+) and [Co(cis-diammac)](2+) complexes depends on the pH of the solution and the coordinating properties of the supporting electrolyte. Electrochemical studies indicate that the adsorbed Co(II) complex on the surface of mercury is the active catalyst for the reduction of protons to dihydrogen.
Collapse
Affiliation(s)
- Paul V. Bernhardt
- Department of Chemistry, University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
43
|
Sonoyama N, Kirii M, Sakata T. Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2. Electrochem commun 1999. [DOI: 10.1016/s1388-2481(99)00041-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
44
|
Behar D, Dhanasekaran T, Neta P, Hosten CM, Ejeh D, Hambright P, Fujita E. Cobalt Porphyrin Catalyzed Reduction of CO2. Radiation Chemical, Photochemical, and Electrochemical Studies. J Phys Chem A 1998. [DOI: 10.1021/jp9807017] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Etsuko Fujita
- Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
45
|
Palladium and cobalt complexes of substituted quinoline, bipyridine and phenanthroline as catalysts for electrochemical reduction of carbon dioxide. Electrochim Acta 1997. [DOI: 10.1016/s0013-4686(96)00453-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Electrocatalytic reduction of carbon dioxide by substituted pyridine and pyrazole complexes of palladium. Electrochim Acta 1996. [DOI: 10.1016/0013-4686(96)00136-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Collomb-Dunand-Sauthier MN, Deronzier A, Ziessel R. Electrocatalytic reduction of CO2in water on a polymeric [{Ru0(bpy)(CO)2}n](bpy = 2,2′-bipyridine) complex immobilized on carbon electrodes. ACTA ACUST UNITED AC 1994. [DOI: 10.1039/c39940000189] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Ziessel R. Photocatalysis: Reduction of Carbon Dioxide and Water-Gas-Shift Reaction Photocatalyzed by 2,2′-Bipyridine or 1,10-Phenanthroline Cobalt(II), Ruthenium(II), Rhenium(I) and Iridium(III) Complexes. CATALYSIS BY METAL COMPLEXES 1993. [DOI: 10.1007/978-94-017-2626-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
|
50
|
Atoguchi T, Aramata A, Kazusaka A, Enyo M. Electrocatalytic activity of CoII TPP-pyridine complex modified carbon electrode for CO2 reduction. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0022-0728(91)85312-d] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|