1
|
Bhattacharya A, Falk ID, Moss FR, Weiss TM, Tran KN, Burns NZ, Boxer SG. Structure-function relationships in pure archaeal bipolar tetraether lipids. Chem Sci 2024:d4sc03788j. [PMID: 39149219 PMCID: PMC11320390 DOI: 10.1039/d4sc03788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Archaeal bipolar tetraether lipids (BTLs) are among the most unusual lipids occurring in nature because of their presumed ability to span the entire membrane to form a monolayer structure. It is believed that because of their unique structural organization and chemical stability, BTLs offer extraordinary adaptation to archaea to thrive in the most extreme milieus. BTLs have also received considerable attention for development of novel membrane-based materials. Despite their fundamental biological significance and biotechnological interests, prior studies on pure BTLs are limited because of the difficulty to extract them in pure form from natural sources or to synthesize them chemically. Here we have utilized chemical synthesis to enable in-depth biophysical investigations on a series of chemically pure glycerol dialkyl glycerol tetraether (GDGT) lipids. The lipids self-assemble to form membrane-bound vesicles encapsulating polar molecules in aqueous media, and reconstitute a functional integral membrane protein. Structural properties of the membranes were characterized via small-angle X-ray scattering (SAXS) and cryogenic electron microscopy (cryo-EM). SAXS studies on bulk aqueous dispersions of GDGT lipids over 10-90 °C revealed lamellar and non-lamellar phases and their transitions. Next we asked whether vesicles overwhelmingly composed of a single GDGT species can undergo fusion as it is difficult to conceptualize such behavior with the assumption that such membranes have a monolayer structure. Interestingly, we observed that GDGT vesicles undergo fusion with influenza virus with lipid mixing kinetics comparable to that with vesicles composed of monopolar phospholipids. Our results suggest that GDGT membranes may consist of regions with a bilayer structure or form bilayer structures transiently which facilitate fusion and thus offer insight into how archaea may perform important physiological functions that require dynamical membrane behavior.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Stanford Center for Innovation in Global Health, Stanford University Stanford CA 94305 USA
| | - Isaac D Falk
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Frank R Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Khoi N Tran
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Noah Z Burns
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
2
|
Baccile N, Chaleix V, Hoffmann I. Measuring the bending rigidity of microbial glucolipid (biosurfactant) bioamphiphile self-assembled structures by neutron spin-echo (NSE): Interdigitated vesicles, lamellae and fibers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1866:184243. [PMID: 39491124 DOI: 10.1016/j.bbamem.2023.184243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Bending rigidity, k, is classically measured for lipid membranes to characterize their nanoscale mechanical properties as a function of composition. Widely employed as a comparative tool, it helps understanding the relationship between the lipid's molecular structure and the elastic properties of its corresponding bilayer. Widely measured for phospholipid membranes in the shape of giant unilamellar vesicles (GUVs), bending rigidity is determined here for three self-assembled structures formed by a new biobased glucolipid bioamphiphile, rather associated to the family of glycolipid biosurfactants than phospholipids. In its oleyl form, glucolipid G-C18:1 can assemble into vesicles or crystalline fibers, while in its stearyl form, glucolipid G-C18:0 can assemble into lamellar gels. Neutron spin-echo (NSE) is employed in the q-range between 0.3 nm-1 (21 nm) and 1.5 nm-1 (4.1 nm) with a spin-echo time in the range of up to 500 ns to characterize the bending rigidity of three different structures (Vesicle suspension, Lamellar gel, Fiber gel) solely composed of a single glucolipid. The low (k = 0.30 ± 0.04 kbT) values found for the Vesicle suspension and high values found for the Lamellar (k = 130 ± 40 kbT) and Fiber gels (k = 900 ± 500 kbT) are unusual when compared to most phospholipid membranes. By attempting to quantify for the first time the bending rigidity of self-assembled bioamphiphiles, this work not only contributes to the fundamental understanding of these new molecular systems, but it also opens new perspectives in their integration in the field of soft materials.
Collapse
Affiliation(s)
- Niki Baccile
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France.
| | - Vincent Chaleix
- Université de Limoges, Faculté des sciences et techniques, Laboratoire LABCiS - UR 22722, 87060 Limoges, France
| | | |
Collapse
|
3
|
Self-assembly and biophysical properties of archaeal lipids. Emerg Top Life Sci 2022; 6:571-582. [PMID: 36377774 DOI: 10.1042/etls20220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Archaea constitute one of the three fundamental domains of life. Archaea possess unique lipids in their cell membranes which distinguish them from bacteria and eukaryotes. This difference in lipid composition is referred to as 'Lipid Divide' and its origins remain elusive. Chemical inertness and the highly branched nature of the archaeal lipids afford the membranes stability against extremes of temperature, pH, and salinity. Based on the molecular architecture, archaeal polar lipids are of two types - monopolar and bipolar. Both monopolar and bipolar lipids have been shown to form vesicles and other well-defined membrane architectures. Bipolar archaeal lipids are among the most unique lipids found in nature because of their membrane-spanning nature and mechanical stability. The majority of the self-assembly studies on archaeal lipids have been carried out using crude polar lipid extracts or molecular mimics. The complexity of the archaeal lipids makes them challenging to synthesize chemically, and as a result, studies on pure lipids are few. There is an ongoing effort to develop simplified routes to synthesize complex archaeal lipids to facilitate diverse biophysical studies and pharmaceutical applications. Investigation on archaeal lipids may help us understand how life survives in extreme conditions and therefore unlock some of the mysteries surrounding the origins of cellular life.
Collapse
|
4
|
Adachi J, Naito M, Sugiura S, Le NHT, Nishimura S, Huang S, Suzuki S, Kawamorita S, Komiya N, Hill JP, Ariga K, Naota T, Mori T. Coordination Amphiphile: Design of Planar-Coordinated Platinum Complexes for Monolayer Formation at an Air-Water Interface Based on Ligand Characteristics and Molecular Topology. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Junya Adachi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masaya Naito
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Sho Sugiura
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ngoc Ha-Thu Le
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shoma Nishimura
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shufang Huang
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shuichi Suzuki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Soichiro Kawamorita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Jonathan P. Hill
- Functional Chromophores Group, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0827, Japan
- International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Taizo Mori
- International Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| |
Collapse
|
5
|
Falk ID, Gál B, Bhattacharya A, Wei JH, Welander PV, Boxer SG, Burns NZ. Enantioselective Total Synthesis of the Archaeal Lipid Parallel GDGT‐0 (Isocaldarchaeol)**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Isaac D. Falk
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Bálint Gál
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | | | - Jeremy H. Wei
- Department of Earth System Science Stanford University Stanford CA 94305 USA
| | - Paula V. Welander
- Department of Earth System Science Stanford University Stanford CA 94305 USA
| | - Steven G. Boxer
- Department of Chemistry Stanford University Stanford CA 94305 USA
| | - Noah Z. Burns
- Department of Chemistry Stanford University Stanford CA 94305 USA
| |
Collapse
|
6
|
Falk ID, Gál B, Bhattacharya A, Wei JH, Welander PV, Boxer SG, Burns NZ. Enantioselective Total Synthesis of the Archaeal Lipid Parallel GDGT-0 (Isocaldarchaeol)*. Angew Chem Int Ed Engl 2021; 60:17491-17496. [PMID: 33930240 DOI: 10.1002/anie.202104051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Archaeal glycerol dibiphytanyl glycerol tetraethers (GDGT) are some of the most unusual membrane lipids identified in nature. These amphiphiles are the major constituents of the membranes of numerous Archaea, some of which are extremophilic organisms. Due to their unique structures, there has been significant interest in studying both the biophysical properties and the biosynthesis of these molecules. However, these studies have thus far been hampered by limited access to chemically pure samples. Herein, we report a concise and stereoselective synthesis of the archaeal tetraether lipid parallel GDGT-0 and the synthesis and self-assembly of derivatives bearing different polar groups.
Collapse
Affiliation(s)
- Isaac D Falk
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Bálint Gál
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | | | - Jeremy H Wei
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Kim YH, Leriche G, Diraviyam K, Koyanagi T, Gao K, Onofrei D, Patterson J, Guha A, Gianneschi N, Holland GP, Gilson MK, Mayer M, Sept D, Yang J. Entropic effects enable life at extreme temperatures. SCIENCE ADVANCES 2019; 5:eaaw4783. [PMID: 31049402 PMCID: PMC6494508 DOI: 10.1126/sciadv.aaw4783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Maintaining membrane integrity is a challenge at extreme temperatures. Biochemical synthesis of membrane-spanning lipids is one adaptation that organisms such as thermophilic archaea have evolved to meet this challenge and preserve vital cellular function at high temperatures. The molecular-level details of how these tethered lipids affect membrane dynamics and function, however, remain unclear. Using synthetic monolayer-forming lipids with transmembrane tethers, here, we reveal that lipid tethering makes membrane permeation an entropically controlled process that helps to limit membrane leakage at elevated temperatures relative to bilayer-forming lipid membranes. All-atom molecular dynamics simulations support a view that permeation through membranes made of tethered lipids reduces the torsional entropy of the lipids and leads to tighter lipid packing, providing a molecular interpretation for the increased transition-state entropy of leakage.
Collapse
Affiliation(s)
- Young Hun Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karthik Diraviyam
- Department of Biomedical Engineering, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takaoki Koyanagi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kaifu Gao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Onofrei
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Joseph Patterson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anirvan Guha
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - Nathan Gianneschi
- Departments of Chemistry, Materials Science and Engineering, and Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, USA
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - David Sept
- Department of Biomedical Engineering, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Tsugane M, Suzuki H. Reverse Transcription Polymerase Chain Reaction in Giant Unilamellar Vesicles. Sci Rep 2018; 8:9214. [PMID: 29907779 PMCID: PMC6003926 DOI: 10.1038/s41598-018-27547-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
We assessed the applicability of giant unilamellar vesicles (GUVs) for RNA detection using in vesicle reverse transcription polymerase chain reaction (RT-PCR). We prepared GUVs that encapsulated one-pot RT-PCR reaction mixture including template RNA, primers, and Taqman probe, using water-in-oil emulsion transfer method. After thermal cycling, we analysed the GUVs that exhibited intense fluorescence signals, which represented the cDNA amplification. The detailed analysis of flow cytometry data demonstrated that rRNA and mRNA in the total RNA can be amplified from 10–100 copies in the GUVs with 5–10 μm diameter, although the fraction of reactable GUV was approximately 60% at most. Moreover, we report that the target RNA, which was directly transferred into the GUV reactors via membrane fusion, can be amplified and detected using in vesicle RT-PCR. These results suggest that the GUVs can be used as biomimetic reactors capable of performing PCR and RT-PCR, which are important in analytical and diagnostic applications with additional functions.
Collapse
Affiliation(s)
- Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.,Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Leriche G, Cifelli JL, Sibucao KC, Patterson JP, Koyanagi T, Gianneschi NC, Yang J. Characterization of drug encapsulation and retention in archaea-inspired tetraether liposomes. Org Biomol Chem 2017; 15:2157-2162. [DOI: 10.1039/c6ob02832b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Archaea-inspired lipids exhibit reduced membrane permeability and increased retention of hydrophilic drugs in liposomes.
Collapse
Affiliation(s)
- Geoffray Leriche
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Jessica L. Cifelli
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Kevin C. Sibucao
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Joseph P. Patterson
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Takaoki Koyanagi
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- La Jolla
- USA
| |
Collapse
|
10
|
Li R, Muraoka T, Kinbara K. Contrasting Topological Effect of PEG-Containing Amphiphiles to Natural Lipids on Stability of Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4546-4553. [PMID: 27093474 DOI: 10.1021/acs.langmuir.6b00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Topology of amphiphiles is important to control physicochemical properties of supramolecular assemblies. Nature demonstrates higher stability of membrane composed of lipids with a macrocyclic aliphatic tail than those with linear tails, which likely results from the restricted molecular structures of the macrocyclic lipids, allowing for closer molecular packing. In contrast, here we report that a PEG-containing macrocyclic amphiphile shows lower stability of vesicles than the corresponding acyclic one. The macrocyclic amphiphile consists of an aromatic hydrophobic part with chirality in which both ends are strapped by octaethylene glycol via phosphoric ester groups, while the acyclic amphiphile bears tetraethylene glycol chains attached to both ends of the hydrophobic part. Because of the thermoresponsive property of PEG to change its conformation, the hydrophobic part of the macrocyclic amphiphile undergoes a larger thermal conformational change than that of the acyclic one. In addition, the cyclic amphiphile has a larger molecular area, which likely reduces the vesicular stability compared with the acyclic one. Such a contrasting topological effect caused by macrocyclization at the aliphatic part seen in the natural system and at the hydrophilic part demonstrated in this study leads to expand the molecular design of amphiphiles for both increasing and decreasing the stability of vesicles by molecular topology.
Collapse
Affiliation(s)
- Rui Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Takahiro Muraoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
- PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazushi Kinbara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology , 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
11
|
Koyanagi T, Leriche G, Onofrei D, Holland GP, Mayer M, Yang J. Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids. Angew Chem Int Ed Engl 2015; 55:1890-3. [DOI: 10.1002/anie.201510445] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Takaoki Koyanagi
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla CA 92093-0358 USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla CA 92093-0358 USA
| | - David Onofrei
- Department of Chemistry and Biochemistry; San Diego State University; San Diego CA 92182-1030 USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry; San Diego State University; San Diego CA 92182-1030 USA
| | - Michael Mayer
- Department of Biomedical Engineering; University of Michigan; Ann Arbor MI 48109 USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla CA 92093-0358 USA
| |
Collapse
|
12
|
Koyanagi T, Leriche G, Onofrei D, Holland GP, Mayer M, Yang J. Cyclohexane Rings Reduce Membrane Permeability to Small Ions in Archaea-Inspired Tetraether Lipids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201510445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takaoki Koyanagi
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla CA 92093-0358 USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla CA 92093-0358 USA
| | - David Onofrei
- Department of Chemistry and Biochemistry; San Diego State University; San Diego CA 92182-1030 USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry; San Diego State University; San Diego CA 92182-1030 USA
| | - Michael Mayer
- Department of Biomedical Engineering; University of Michigan; Ann Arbor MI 48109 USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry; University of California San Diego; La Jolla CA 92093-0358 USA
| |
Collapse
|
13
|
Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 2009; 73:104-8. [PMID: 19129645 DOI: 10.1271/bbb.80520] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Archaea have unique membrane lipids typified by ether linkages of the glycerol-to-isoprenoid chains with sn-2,3 stereochemistry that runs against the naturally occurring sn-1,2 stereochemistry of the glycerophospholipids of Bacteria and Eukarya. Membrane lipids were extracted and analyzed from the hyperthermophilic archaeon, Thermococcus kodakaraensis, cultivated at various temperatures. At all growth temperatures examined, both the diphytanylglycerol diether (archaeol, C(20)) and diphytanyldiglycerol tetraether (caldarchaeol, C(40)) were identified as saturated forms, and no other lipids could be identified. The ratio of caldarchaeol to archaeol increased with increasing growth temperature, particularly at 93 degrees C. A larger amount of archaeol was detected from cells in the logarithmic phase than from those in the stationary phase at all temperatures examined. These results indicate that T. kodakaraensis modulated the membrane lipid composition depending on both the growth phase and the growth temperature, and suggest that the membrane fluidity to environmental change was maintained by altering the length of the hydrocarbon chains, and not by side-chain saturation such as double-bond hydrogenation nor by such a modification as cyclopentane ring formation.
Collapse
|
14
|
Dembitsky VM. Astonishing diversity of natural surfactants: 3. Carotenoid glycosides and isoprenoid glycolipids. Lipids 2005; 40:535-57. [PMID: 16149733 DOI: 10.1007/s11745-005-1415-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Carotenoid glycosides and isoprenoid glycolipids are of great interest, especially for the medicinal, pharmaceutical, food, cosmetic, flavor, and fragrance industries. These biologically active natural surfactants have good prospects for the future chemical preparation of compounds useful as antimicrobial, antibacterial, and antitumor agents, or in industry. More than 300 unusual natural surfactants are described in this review article, including their chemical structures and biological activities.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Organic Chemistry and School of Pharmacy, Hebrew University, Jerusalem, Israel.
| |
Collapse
|