Hayashi Y. Diarylprolinol as an Effective Organocatalyst in Asymmetric Cross-aldol Reactions of Two Different Aldehydes.
CHEM REC 2022:e202200159. [PMID:
35896950 DOI:
10.1002/tcr.202200159]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
The aldol reaction is one of the most important carbon-carbon bond-forming reactions in organic chemistry. Asymmetric direct cross-aldol reaction of two different aldehydes has been regarded as a difficult reaction because of the side reactions such as self-aldol reaction and over reaction. We found that trifluoromethyl-substituted diarylprolinol, α,α-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol (1), is an effective organocatalyst that promotes several cross-aldol reactions of aldehydes with excellent diastereo- and enantioselectivities. Acetaldehyde can be employed as a suitable nucleophilic aldehyde. Successful electrophilic aldehydes are ethyl glyoxylate, chloroacetaldehyde, dichloroacetaldehyde, chloral, α-alkyl-α-oxo aldehyde, trifluoroacetaldehyde, glyoxal, alkenyl aldehyde, alkynyl aldehyde, and formaldehyde. Some of the aldehydes are commercially available as a polymer solution, an aqueous solution, or in the hydrated form. They can be used directly in the asymmetric aldol reaction as a commercially available form, which is a synthetic advantage. Given that the obtained aldol products possess several functional groups along with a formyl moiety, they are synthetically useful chiral building blocks.
Collapse