1
|
Yang Z, Liu J, Xie LG. 1,2-Fluorosulfenylation of unactivated alkenes with thiols and a fluoride source promoted by bromodimethylsulfonium bromide. Chem Commun (Camb) 2023; 59:14153-14156. [PMID: 37955272 DOI: 10.1039/d3cc05045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A practical method that enables the fluorosulfenylation of unactivated alkenes processed directly with thiols and fluoride salts is presented. Good to excellent efficiencies and functional group tolerance are observed for both alkene substrates and thiols. The procedure also allows the use of gaseous ethylene as a two-carbon building block for β-fluoro thioether products.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Dong X, Klein M, Waldvogel SR, Morandi B. Controlling Selectivity in Shuttle Hetero-difunctionalization Reactions: Electrochemical Transfer Halo-thiolation of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202213630. [PMID: 36336662 PMCID: PMC10107926 DOI: 10.1002/anie.202213630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
Shuttle hetero-difunctionalization reaction, in which two chemically distinct functional groups are transferred between two molecules, has long been an unmet goal due to the daunting challenges in controlling the chemo-, regio-, and stereoselectivity. Herein, we disclose an electrochemistry enabled shuttle reaction (e-shuttle) to selectively transfer one RS- and one X- group between β-halosulfides and unsaturated hydrocarbons via a consecutive paired electrolysis mechanism. The preferential anodic oxidation of one anion over the other, which is controlled by their distinct redox potentials, plays a pivotal role in controlling the high chemoselectivity of the process. This easily scalable methodology enables the construction of a myriad of densely functionalized β-halo alkenyl sulfides in unprecedented chemo-, regio-, and stereoselectivity using benign surrogates, e.g., 2-bromoethyl sulfide, avoiding the handling of corrosive and oxidative RS-Br reagents. In a broader context, these results open up new strategies for selective shuttle difunctionalization reactions.
Collapse
Affiliation(s)
- Xichang Dong
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Martin Klein
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
3
|
Takumi M, Sakaue H, Shibasaki D, Nagaki A. Rapid access to organic triflates based on flash generation of unstable sulfonium triflates in flow. Chem Commun (Camb) 2022; 58:8344-8347. [PMID: 35797717 DOI: 10.1039/d2cc02344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flash (extremely fast) electrochemical generation of unstable arylbis(arylthio)sulfonium triflates [ArS(ArSSAr)]+ [OTf]- that are unsuitable for accumulation in batch processes was achieved within 10 s in a divided-type flow electrochemcial reactor, enabling one-flow access to vinyl triflates, short-lived oxocarbenium triflates and glycosyl triflates.
Collapse
Affiliation(s)
- Masahiro Takumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Hodaka Sakaue
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Daiki Shibasaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Yu Y, Jiang Y, Wu S, Shi Z, Wu J, Yuan Y, Ye K. Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Jiang YM, Yu Y, Wu SF, Yan H, Yuan Y, Ye KY. Electrochemical fluorosulfonylation of styrenes. Chem Commun (Camb) 2021; 57:11481-11484. [PMID: 34667999 DOI: 10.1039/d1cc04813a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An environmentally friendly and efficient electrochemical fluorosulfonylation of styrenes has been developed. With the use of sulfonylhydrazides and triethylamine trihydrofluoride, a diverse array of β-fluorosulfones could be readily obtained. This reaction features mild conditions and a broad substrate scope, which could also be conveniently extended to a gram-scale preparation.
Collapse
Affiliation(s)
- Yi-Min Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shao-Fen Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hong Yan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Liu S, Zeng X, Xu B. Practical fluorothiolation and difluorothiolation of alkenes using pyridine-HF and N-thiosuccinimides. Org Chem Front 2020. [DOI: 10.1039/c9qo01228a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorothiolation and difluorothiolation of alkenes using pyridine-HF and N-thiosuccinimides.
Collapse
Affiliation(s)
- Shiwen Liu
- College of Textiles and Clothing
- Yancheng Institute of Technology
- Yancheng
- China
- Key Laboratory of Science and Technology of Eco-Textiles
| | - Xiaojun Zeng
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textiles
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
7
|
Ashikari Y, Saito K, Nokami T, Yoshida JI, Nagaki A. Oxo-Thiolation of Cationically Polymerizable Alkenes Using Flow Microreactors. Chemistry 2019; 25:15239-15243. [PMID: 31414708 DOI: 10.1002/chem.201903426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/14/2019] [Indexed: 01/11/2023]
Abstract
The present study describes the cationic oxo-thiolation of polymerizable alkenes by using highly reactive cationic species generated by anodic oxidation. These highly reactive cations were able to activate alkenes before their polymerization. Fast mixing in flow microreactors effectively controlled chemoselectivity, enabling higher reaction temperatures.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology and Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
8
|
Balandeh M, Rios A, Allison N, Shirazi D, Gomez A, Rambaran L, Holloway T, Sadeghi S. Electrochemical Flash Fluorination and Radiofluorination. ChemElectroChem 2018; 5:3353-3356. [PMID: 31475090 DOI: 10.1002/celc.201800973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new method for rapid late-stage fluorination using the cation pool technique is presented. Fluorination and no-carrier-added radiofluorination of methyl (phenylthio) acetate, methyl 2-(methylthio) acetate, and methyl 2-(ethylthio) acetate were performed. The carbocations formed through electrochemical oxidation were stabilized by using a divided electrochemical cell and 2,2,2-trifluoroethanol (TFE) as the solvent at -20 °C. At the end of electrolysis, either stable-isotope [19F]fluoride or no-carrier-added radioactive [18F]fluoride was added to the reaction mixture to form the fluorinated or radiofluorinated product.
Collapse
Affiliation(s)
- Mehrdad Balandeh
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Alejandra Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA.,Physics and Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Nathanael Allison
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Daniela Shirazi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Adrian Gomez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Laura Rambaran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Travis Holloway
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| | - Saman Sadeghi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
9
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 594] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
10
|
Yan M, Kawamata Y, Baran PS. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem Rev 2017; 117:13230-13319. [PMID: 28991454 PMCID: PMC5786875 DOI: 10.1021/acs.chemrev.7b00397] [Citation(s) in RCA: 1962] [Impact Index Per Article: 280.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry represents one of the most intimate ways of interacting with molecules. This review discusses advances in synthetic organic electrochemistry since 2000. Enabling methods and synthetic applications are analyzed alongside innate advantages as well as future challenges of electroorganic chemistry.
Collapse
Affiliation(s)
| | | | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Yoshida JI, Shimizu A, Hayashi R. Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances. Chem Rev 2017; 118:4702-4730. [PMID: 29077393 DOI: 10.1021/acs.chemrev.7b00475] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemistry serves as a powerful method for generating reactive intermediates, such as organic cations. In general, there are two ways to use reactive intermediates for chemical reactions: (1) generation in the presence of a reaction partner and (2) generation in the absence of a reaction partner with accumulation in solution as a "pool" followed by reaction with a subsequently added reaction partner. The former approach is more popular because reactive intermediates are usually short-lived transient species, but the latter method is more flexible and versatile. This review focuses on the latter approach and provides a concise overview of the current methods for the generation and accumulation of cationic reactive intermediates as a pool using modern techniques of electrochemistry and their reactions with subsequently added nucleophilic reaction partners.
Collapse
Affiliation(s)
- Jun-Ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Akihiro Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Ryutaro Hayashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto 615-8510 , Japan
| |
Collapse
|
12
|
Matsumoto K, Miyamoto Y, Shimada K, Morisawa Y, Zipse H, Suga S, Yoshida JI, Kashimura S, Wakabayashi T. Low temperature in situ Raman spectroscopy of an electro-generated arylbis(arylthio)sulfonium ion. Chem Commun (Camb) 2015; 51:13106-9. [DOI: 10.1039/c5cc03585f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Low temperature in situ Raman spectroscopy detects reactive intermediate cations generated by the electrochemical oxidation in organic chemistry.
Collapse
Affiliation(s)
- Kouichi Matsumoto
- Department of Chemistry
- School of Science and Engineering
- Kindai University
- Osaka 577-8502
- Japan
| | - Yu Miyamoto
- Department of Chemistry
- School of Science and Engineering
- Kindai University
- Osaka 577-8502
- Japan
| | - Kazuaki Shimada
- Department of Chemistry
- School of Science and Engineering
- Kindai University
- Osaka 577-8502
- Japan
| | - Yusuke Morisawa
- Department of Chemistry
- School of Science and Engineering
- Kindai University
- Osaka 577-8502
- Japan
| | - Hendrik Zipse
- Department of Chemistry
- LMU München
- D-81377 München
- Germany
| | - Seiji Suga
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Shigenori Kashimura
- Department of Chemistry
- School of Science and Engineering
- Kindai University
- Osaka 577-8502
- Japan
| | - Tomonari Wakabayashi
- Department of Chemistry
- School of Science and Engineering
- Kindai University
- Osaka 577-8502
- Japan
| |
Collapse
|
13
|
Cresswell AJ, Davies SG, Roberts PM, Thomson JE. Beyond the Balz-Schiemann reaction: the utility of tetrafluoroborates and boron trifluoride as nucleophilic fluoride sources. Chem Rev 2014; 115:566-611. [PMID: 25084541 DOI: 10.1021/cr5001805] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alexander J Cresswell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | |
Collapse
|
14
|
Matsumoto K, Shimazaki H, Sanada T, Shimada K, Hagiwara S, Suga S, Kashimura S, Yoshida JI. Electrogenerated Acid (EGA)-catalyzed Addition of Diaryl Disulfides to Carbon–Carbon Multiple Bonds. CHEM LETT 2013. [DOI: 10.1246/cl.130255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | - Seiji Suga
- Division of Chemistry and Biotechnology, Graduate School of Natural Science and Technology, Okayama University
| | | | - Jun-ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
15
|
Matsumoto K, Sanada T, Shimazaki H, Shimada K, Hagiwara S, Fujie S, Ashikari Y, Suga S, Kashimura S, Yoshida JI. The Addition of ArSSAr to Alkenes: The Implications of a Cationic Chain Mechanism Initiated by Electrogenerated ArS(ArSSAr)+. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Yoshida JI, Ashikari Y, Matsumoto K, Nokami T. Recent Developments in the ^|^ldquo;Cation Pool^|^rdquo; Method. J SYN ORG CHEM JPN 2013. [DOI: 10.5059/yukigoseikyokaishi.71.1136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Cresswell AJ, Davies SG, Lee JA, Morris MJ, Roberts PM, Thomson JE. Diastereodivergent Hydroxyfluorination of Cyclic and Acyclic Allylic Amines: Synthesis of 4-Deoxy-4-fluorophytosphingosines. J Org Chem 2012; 77:7262-81. [DOI: 10.1021/jo301056r] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexander J. Cresswell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA,
U.K
| | - Stephen G. Davies
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA,
U.K
| | - James A. Lee
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA,
U.K
| | - Melloney J. Morris
- Syngenta, Jealott’s Hill International Research Centre, Bracknell,
Berkshire RG42 6EY, U.K
| | - Paul M. Roberts
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA,
U.K
| | - James E. Thomson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA,
U.K
| |
Collapse
|
18
|
Electrophilic substitution reactions using an electrogenerated ArS(ArSSAr)+ cation pool as an ArS+ equivalent. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.01.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Saito K, Saigusa Y, Nokami T, Yoshida JI. Electrochemically Generated ArS(ArSSAr)+B(C6F5)4−as an Activator of Thioglycosides for Glycosylation. CHEM LETT 2011. [DOI: 10.1246/cl.2011.678] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Cresswell AJ, Davies SG, Lee JA, Morris MJ, Roberts PM, Thomson JE. Ring-opening hydrofluorination of 2,3- and 3,4-epoxy amines by HBF4·OEt2: application to the asymmetric synthesis of (S,S)-3-deoxy-3-fluorosafingol. J Org Chem 2011; 76:4617-27. [PMID: 21495698 DOI: 10.1021/jo200517w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of a range of 2,3- and 3,4-epoxy amines with HBF(4)·OEt(2) at room temperature results in fast and efficient S(N)2-type ring-opening hydrofluorination to give stereodefined amino fluorohydrins. Operational simplicity, scalability, and short reaction time at ambient temperature are notable features of this method. The utility of this methodology is exemplified in a concise asymmetric synthesis of (S,S)-3-deoxy-3-fluorosafingol.
Collapse
Affiliation(s)
- Alexander J Cresswell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | | | | | | | | |
Collapse
|
21
|
Saito K, Ueoka K, Matsumoto K, Suga S, Nokami T, Yoshida JI. Indirect Cation-Flow Method: Flash Generation of Alkoxycarbenium Ions and Studies on the Stability of Glycosyl Cations. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Saito K, Ueoka K, Matsumoto K, Suga S, Nokami T, Yoshida JI. Indirect Cation-Flow Method: Flash Generation of Alkoxycarbenium Ions and Studies on the Stability of Glycosyl Cations. Angew Chem Int Ed Engl 2011; 50:5153-6. [DOI: 10.1002/anie.201100854] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Indexed: 11/05/2022]
|
23
|
Matsumoto K, Suga S, Yoshida JI. Organic reactions mediated by electrochemically generated ArS+. Org Biomol Chem 2011; 9:2586-96. [DOI: 10.1039/c0ob01070g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Fujie S, Matsumoto K, Suga S, Nokami T, Yoshida JI. Addition of ArSSAr to carbon–carbon multiple bonds using electrochemistry. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.02.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|