1
|
Khanppnavar B, Choo JPS, Hagedoorn PL, Smolentsev G, Štefanić S, Kumaran S, Tischler D, Winkler FK, Korkhov VM, Li Z, Kammerer RA, Li X. Structural basis of the Meinwald rearrangement catalysed by styrene oxide isomerase. Nat Chem 2024; 16:1496-1504. [PMID: 38744914 PMCID: PMC11374702 DOI: 10.1038/s41557-024-01523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Membrane-bound styrene oxide isomerase (SOI) catalyses the Meinwald rearrangement-a Lewis-acid-catalysed isomerization of an epoxide to a carbonyl compound-and has been used in single and cascade reactions. However, the structural information that explains its reaction mechanism has remained elusive. Here we determine cryo-electron microscopy (cryo-EM) structures of SOI bound to a single-domain antibody with and without the competitive inhibitor benzylamine, and elucidate the catalytic mechanism using electron paramagnetic resonance spectroscopy, functional assays, biophysical methods and docking experiments. We find ferric haem b bound at the subunit interface of the trimeric enzyme through H58, where Fe(III) acts as the Lewis acid by binding to the epoxide oxygen. Y103 and N64 and a hydrophobic pocket binding the oxygen of the epoxide and the aryl group, respectively, position substrates in a manner that explains the high regio-selectivity and stereo-specificity of SOI. Our findings can support extending the range of epoxide substrates and be used to potentially repurpose SOI for the catalysis of new-to-nature Fe-based chemical reactions.
Collapse
Affiliation(s)
- Basavraj Khanppnavar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland
| | - Joel P S Choo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Saša Štefanić
- Nanobody Service Facility. AgroVet-Strickhof, University of Zurich, Lindau, Switzerland
| | | | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Volodymyr M Korkhov
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
2
|
Yan S, Ren X, Zheng L, Wang X, Liu T. A systematic analysis of residue and risk of cyantraniliprole in the water-sediment system: Does metabolism reduce its environmental risk? ENVIRONMENT INTERNATIONAL 2023; 179:108185. [PMID: 37688810 DOI: 10.1016/j.envint.2023.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
As a representative variety of diamide insecticides, cyantraniliprole has broad application prospects. In this study, the fate and risk of cyantraniliprole and its main metabolite J9Z38 in a water-sediment system were investigated. The present result showed that more J9Z38 was adsorbed in the sediment at the end of exposure. However, the bioaccumulation capacity of cyantraniliprole in zebrafish was higher than that of J9Z38. Cyantraniliprole had stronger influence on the antioxidant system and detoxification system of zebrafish than J9Z38. Moreover, cyantraniliprole induced more significant oxidative stress effect and more differentially expressed genes (DEGs) in zebrafish. Cyantraniliprole had significantly influence on the expression of RyR-receptor-related genes, which was confirmed by resolving their binding modes with key receptor proteins using AlphaFold2 and molecular docking techniques. In the sediment, both cyantraniliprole and J9Z38 had inhibitory effects on microbial community structure diversity and metabolic function, especially cyantraniliprole. The methane metabolism pathway, mediated by methanogens such as Methanolinea, Methanoregula, and Methanosaeta, may be the main pathway of degradation of cyantraniliprole and J9Z38 in sediments. The present results demonstrated that metabolism can reduce the environmental risk of cyantraniliprole in water-sediment system to a certain extent.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangyu Ren
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Center for Environmental Protection, Beijing 100029, China.
| | - Xiuguo Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tong Liu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
3
|
Hanson SM, Scholüke J, Liewald J, Sharma R, Ruse C, Engel M, Schüler C, Klaus A, Arghittu S, Baumbach F, Seidenthal M, Dill H, Hummer G, Gottschalk A. Structure-function analysis suggests that the photoreceptor LITE-1 is a light-activated ion channel. Curr Biol 2023; 33:3423-3435.e5. [PMID: 37527662 DOI: 10.1016/j.cub.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/22/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023]
Abstract
Sensation of light is essential for all organisms. The eye-less nematode Caenorhabditis elegans detects UV and blue light to evoke escape behavior. The photosensor LITE-1 absorbs UV photons with an unusually high extinction coefficient, involving essential tryptophans. Here, we modeled the structure and dynamics of LITE-1 using AlphaFold2-multimer and molecular dynamics (MD) simulations and performed mutational and behavioral assays in C. elegans to characterize its function. LITE-1 resembles olfactory and gustatory receptors from insects, recently shown to be tetrameric ion channels. We identified residues required for channel gating, light absorption, and mechanisms of photo-oxidation, involving a likely binding site for the peroxiredoxin PRDX-2. Furthermore, we identified the binding pocket for a putative chromophore. Several residues lining this pocket have previously been established as essential for LITE-1 function. A newly identified critical cysteine pointing into the pocket represents a likely chromophore attachment site. We derived a model for how photon absorption, via a network of tryptophans and other aromatic amino acids, induces an excited state that is transferred to the chromophore. This evokes conformational changes in the protein, possibly leading to a state receptive to oxidation of cysteines and, jointly, to channel gating. Electrophysiological data support the idea that LITE-1 is a photon and H2O2-coincidence detector. Other proteins with similarity to LITE-1, specifically C. elegans GUR-3, likely use a similar mechanism for photon detection. Thus, a common protein fold and assembly, used for chemoreception in insects, possibly by binding of a particular compound, may have evolved into a light-activated ion channel.
Collapse
Affiliation(s)
- Sonya M Hanson
- Center for Computational Biology and Center for Computational Mathematics, Flatiron Institute, Simons Foundation, 162 5th Avenue, New York, NY 10010, USA; Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany.
| | - Jan Scholüke
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jana Liewald
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Rachita Sharma
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany; Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; International Max Planck Research School for Cellular Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christiane Ruse
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Marcial Engel
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Christina Schüler
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Annabel Klaus
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Serena Arghittu
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; International Max Planck Research School for Cellular Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | - Franziska Baumbach
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Marius Seidenthal
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Holger Dill
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany; Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Alexander Gottschalk
- Buchmann Institute, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany.
| |
Collapse
|
4
|
Martinez Grundman JE, Johnson EA, Lecomte JTJ. Architectural digest: Thermodynamic stability and domain structure of a consensus monomeric globin. Biophys J 2023; 122:3117-3132. [PMID: 37353934 PMCID: PMC10432219 DOI: 10.1016/j.bpj.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Artificial proteins representing the consensus of a set of homologous sequences have attracted attention for their increased thermodynamic stability and conserved activity. Here, we applied the consensus approach to a b-type heme-binding protein to inspect the contribution of a dissociable cofactor to enhanced stability and the chemical consequences of creating a generic heme environment. We targeted the group 1 truncated hemoglobin (TrHb1) subfamily of proteins for their small size (∼120 residues) and ease of characterization. The primary structure, derived from a curated set of ∼300 representative sequences, yielded a highly soluble consensus globin (cGlbN) enriched in acidic residues. Optical and NMR spectroscopies revealed high-affinity heme binding in the expected site and in two orientations. At neutral pH, proximal and distal iron coordination was achieved with a pair of histidine residues, as observed in some natural TrHb1s, and with labile ligation on the distal side. As opposed to studied TrHb1s, which undergo additional folding upon heme binding, cGlbN displayed the same extent of secondary structure whether the heme was associated with the protein or not. Denaturation required guanidine hydrochloride and showed that apo- and holoprotein unfolded in two transitions-the first (occurring with a midpoint of ∼2 M) was shifted to higher denaturant concentration in the holoprotein (∼3.7 M) and reflected stabilization due to heme binding, while the second transition (∼6.2 M) was common to both forms. Thus, the consensus sequence stabilized the protein but exposed the existence of two separately cooperative subdomains within the globin architecture, masked as one single domain in TrHb1s with typical stabilities. The results suggested ways in which specific chemical or thermodynamic features may be controlled in artificial heme proteins.
Collapse
Affiliation(s)
| | - Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
5
|
Zhao H, Zhang H, She Z, Gao Z, Wang Q, Geng Z, Dong Y. Exploring AlphaFold2's Performance on Predicting Amino Acid Side-Chain Conformations and Its Utility in Crystal Structure Determination of B318L Protein. Int J Mol Sci 2023; 24:2740. [PMID: 36769074 PMCID: PMC9916901 DOI: 10.3390/ijms24032740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Recent technological breakthroughs in machine-learning-based AlphaFold2 (AF2) are pushing the prediction accuracy of protein structures to an unprecedented level that is on par with experimental structural quality. Despite its outstanding structural modeling capability, further experimental validations and performance assessments of AF2 predictions are still required, thus necessitating the development of integrative structural biology in synergy with both computational and experimental methods. Focusing on the B318L protein that plays an essential role in the African swine fever virus (ASFV) for viral replication, we experimentally demonstrate the high quality of the AF2 predicted model and its practical utility in crystal structural determination. Structural alignment implies that the AF2 model shares nearly the same atomic arrangement as the B318L crystal structure except for some flexible and disordered regions. More importantly, side-chain-based analysis at the individual residue level reveals that AF2's performance is likely dependent on the specific amino acid type and that hydrophobic residues tend to be more accurately predicted by AF2 than hydrophilic residues. Quantitative per-residue RMSD comparisons and further molecular replacement trials suggest that AF2 has a large potential to outperform other computational modeling methods in terms of structural determination. Additionally, it is numerically confirmed that the AF2 model is accurate enough so that it may well potentially withstand experimental data quality to a large extent for structural determination. Finally, an overall structural analysis and molecular docking simulation of the B318L protein are performed. Taken together, our study not only provides new insights into AF2's performance in predicting side-chain conformations but also sheds light upon the significance of AF2 in promoting crystal structural determination, especially when the experimental data quality of the protein crystal is poor.
Collapse
Affiliation(s)
- Haifan Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhun She
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kondo HX, Iizuka H, Masumoto G, Kabaya Y, Kanematsu Y, Takano Y. Prediction of Protein Function from Tertiary Structure of the Active Site in Heme Proteins by Convolutional Neural Network. Biomolecules 2023; 13:biom13010137. [PMID: 36671521 PMCID: PMC9855806 DOI: 10.3390/biom13010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Structure-function relationships in proteins have been one of the crucial scientific topics in recent research. Heme proteins have diverse and pivotal biological functions. Therefore, clarifying their structure-function correlation is significant to understand their functional mechanism and is informative for various fields of science. In this study, we constructed convolutional neural network models for predicting protein functions from the tertiary structures of heme-binding sites (active sites) of heme proteins to examine the structure-function correlation. As a result, we succeeded in the classification of oxygen-binding protein (OB), oxidoreductase (OR), proteins with both functions (OB-OR), and electron transport protein (ET) with high accuracy. Although the misclassification rate for OR and ET was high, the rates between OB and ET and between OB and OR were almost zero, indicating that the prediction model works well between protein groups with quite different functions. However, predicting the function of proteins modified with amino acid mutation(s) remains a challenge. Our findings indicate a structure-function correlation in the active site of heme proteins. This study is expected to be applied to the prediction of more detailed protein functions such as catalytic reactions.
Collapse
Affiliation(s)
- Hiroko X. Kondo
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita 565-0874, Japan
- Correspondence: (H.X.K.); (Y.T.); Tel.: +81-157-26-9401 (H.X.K.); +81-82-830-1825 (Y.T.)
| | - Hiroyuki Iizuka
- Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kitaku, Sapporo 060-0814, Japan
| | - Gen Masumoto
- Information Systems Division, RIKEN Information R&D and Strategy Headquarters, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yuichi Kabaya
- Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Yusuke Kanematsu
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozukahigashi Asaminamiku, Hiroshima 731-3194, Japan
- Correspondence: (H.X.K.); (Y.T.); Tel.: +81-157-26-9401 (H.X.K.); +81-82-830-1825 (Y.T.)
| |
Collapse
|
7
|
Elucidation of the Correlation between Heme Distortion and Tertiary Structure of the Heme-Binding Pocket Using a Convolutional Neural Network. Biomolecules 2022; 12:biom12091172. [PMID: 36139011 PMCID: PMC9496533 DOI: 10.3390/biom12091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Heme proteins serve diverse and pivotal biological functions. Therefore, clarifying the mechanisms of these diverse functions of heme is a crucial scientific topic. Distortion of heme porphyrin is one of the key factors regulating the chemical properties of heme. Here, we constructed convolutional neural network models for predicting heme distortion from the tertiary structure of the heme-binding pocket to examine their correlation. For saddling, ruffling, doming, and waving distortions, the experimental structure and predicted values were closely correlated. Furthermore, we assessed the correlation between the cavity shape and molecular structure of heme and demonstrated that hemes in protein pockets with similar structures exhibit near-identical structures, indicating the regulation of heme distortion through the protein environment. These findings indicate that the tertiary structure of the heme-binding pocket is one of the factors regulating the distortion of heme porphyrin, thereby controlling the chemical properties of heme relevant to the protein function; this implies a structure–function correlation in heme proteins.
Collapse
|
8
|
Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiontic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea vent environments. Protein Expr Purif 2022; 200:106157. [PMID: 35987324 DOI: 10.1016/j.pep.2022.106157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022]
Abstract
Candidatus Vesicomyosocius okutanii is a currently uncultured endosymbiotic bacterium of the clam Pheragena okutanii, which lives in deep-sea vent environments. The genome of Ca. V. okutanii encodes a sulfur-oxidizing (Sox) enzyme complex, presumably generating biological energy for the host from inorganic sulfur compounds. Here, Ca. V. okutanii SoxX (VoSoxX), a mono-heme cytochrome c component of the Sox complex, was shown to be phylogenetically related to its homologous counterpart (HcSoxX) from a free-living deep-sea vent bacterium, Hydrogenovibrio crunogenus. Both proteins were heterologously expressed in Escherichia coli cells with co-expressing cytochrome c maturation genes. Biochemical analysis using the recombinant proteins showed that VoSoxX had a significantly lower thermal stability than HcSoxX, possibly due to structural differences. For example, the Asn-60 residue in VoSoxX may be hydrophobically disadvantageous compared with the spatially corresponding Val-73 residue in HcSoxX. This study represents the first successful case of heterologous expression of genes from Ca. V. okutanii, suggesting that the endosymbiotic VoSoxX protein does not require stabilization, unlike the free-living HcSoxX protein.
Collapse
|