1
|
Rosenbluth JM, Schackmann RCJ, Gray GK, Selfors LM, Li CMC, Boedicker M, Kuiken HJ, Richardson A, Brock J, Garber J, Dillon D, Sachs N, Clevers H, Brugge JS. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages. Nat Commun 2020; 11:1711. [PMID: 32249764 PMCID: PMC7136203 DOI: 10.1038/s41467-020-15548-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, organoid technology has been used to generate a large repository of breast cancer organoids. Here we present an extensive evaluation of the ability of organoid culture technology to preserve complex stem/progenitor and differentiated cell types via long-term propagation of normal human mammary tissues. Basal/stem and luminal progenitor cells can differentiate in culture to generate mature basal and luminal cell types, including ER+ cells that have been challenging to maintain in culture. Cells associated with increased cancer risk can also be propagated. Single-cell analyses of matched organoid cultures and native tissues by mass cytometry for 38 markers provide a higher resolution representation of the multiple mammary epithelial cell types in the organoids, and demonstrate that protein expression patterns of the tissue of origin can be preserved in culture. These studies indicate that organoid cultures provide a valuable platform for studies of mammary differentiation, transformation, and breast cancer risk. Organoid technology has enabled the generation of several breast cancer organoids. Here, the authors combine propagation of normal human mammary tissues with mass cytometry to evaluate the ability of organoid culture technologies to preserve stem cells and differentiated cell types.
Collapse
Affiliation(s)
- Jennifer M Rosenbluth
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Ron C J Schackmann
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Carman Man-Chung Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Mackenzie Boedicker
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Hendrik J Kuiken
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Andrea Richardson
- Department of Pathology, Brigham & Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Jane Brock
- Department of Pathology, Brigham & Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Judy Garber
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02115, USA
| | - Deborah Dillon
- Department of Pathology, Brigham & Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Norman Sachs
- Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Moreira JMA, Ohlsson G, Rank FE, Celis JE. Down-regulation of the tumor suppressor protein 14-3-3sigma is a sporadic event in cancer of the breast. Mol Cell Proteomics 2005; 4:555-69. [PMID: 15644556 DOI: 10.1074/mcp.m400205-mcp200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
14-3-3 proteins comprise a family of highly conserved and broadly expressed multifunctional regulatory proteins that are involved in various cellular processes such as cell cycle progression, cell growth, differentiation, and apoptosis. Transcriptional expression of the sigma isoform of 14-3-3 is frequently impaired in human cancers, including carcinomas of the breast, which has led to the suggestion that this protein might be involved in the neoplastic transformation of breast epithelial cells. Here we report on the analysis of 14-3-3sigma expression in primary breast tumors using a proteomic approach complemented by immunohistochemical analysis by means of specific antibodies against this isoform. We show that the levels of expression of 14-3-3sigma were similar in non-malignant breast epithelial tissue and matched malignant tissue with only sporadic loss of expression observed in 3 of the 68 tumors examined. Moreover we show that 14-3-3sigma immunoreactivity was restricted to epithelial cells and significantly stronger in the myoepithelial cells that line the mammary ducts and lobules. The lack of expression of 14-3-3sigma in the three breast carcinomas was not associated with high levels of expression of the dominant-negative transcriptional regulator DeltaNp63 or with increased expression of estrogen-responsive finger protein, a ubiquitin-protein ligase (E3) that targets 14-3-3sigma for proteolysis. Validation of the results was performed retrospectively on an independent clinical tumor sample set using a tissue microarray containing 65 primary tumors. Our data suggest that, contrary to what was previously thought, loss of expression of 14-3-3sigma protein is not a frequent event in breast tumorigenesis.
Collapse
Affiliation(s)
- José M A Moreira
- Department of Proteomics in Cancer, Institute of Cancer Biology and Danish Centre for Translational Breast Cancer Research, Danish Cancer Society, DK-2100 Copenhagen.
| | | | | | | |
Collapse
|