1
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
2
|
Cereghetti G, Saad S, Dechant R, Peter M. Reversible, functional amyloids: towards an understanding of their regulation in yeast and humans. Cell Cycle 2018; 17:1545-1558. [PMID: 29963943 DOI: 10.1080/15384101.2018.1480220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein aggregates, and in particular amyloids, are generally considered to be inherently irreversible aberrant clumps, and are often associated with pathologies, such as Alzheimer's disease, Parkinson's disease, or systemic amyloidosis. However, recent evidence demonstrates that some aggregates are not only fully reversible, but also perform essential physiological functions. Despite these new findings, very little is known about how these functional protein aggregates are regulated in a physiological context. Here, we take the yeast pyruvate kinase Cdc19 as an example of a protein forming functional, reversible, solid, amyloid-like aggregates in response to stress conditions. Cdc19 aggregation is regulated via an aggregation-prone low complexity region (LCR). In favorable growth conditions, this LCR is prevented from aggregating by phosphorylation or oligomerization, while upon glucose starvation it becomes exposed and allows aggregation. We suggest that LCR phosphorylation, oligomerization or partner-binding may be general and widespread mechanisms regulating LCR-mediated reversible protein aggregation. Moreover, we show that, as predicted by computational tools, Cdc19 forms amyloid-like aggregates in vitro. Interestingly, we also observe striking similarities between Cdc19 and its mammalian counterpart, PKM2. Indeed, also PKM2 harbors a LCR and contains several peptides with high amyloidogenic propensity, which coincide with known phosphorylation sites. Thus, we speculate that the formation of reversible, amyloid-like aggregates may be a general physiological mechanism for cells to adapt to stress conditions, and that the underlying regulatory mechanisms may be conserved from yeast to humans.
Collapse
Affiliation(s)
- Gea Cereghetti
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland.,b Life Science Zürich , Molecular Life Sciences , Zürich , Switzerland
| | - Shady Saad
- c Department of Chemical and Systems Biology , Stanford University , Stanford, CA , USA
| | - Reinhard Dechant
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| | - Matthias Peter
- a Institute of Biochemistry, Department of Biology , ETH Zürich , Zürich , Switzerland
| |
Collapse
|
3
|
Streubel MK, Bischof J, Weiss R, Duschl J, Liedl W, Wimmer H, Breitenbach M, Weber M, Geltinger F, Richter K, Rinnerthaler M. Behead and live long or the tale of cathepsin L. Yeast 2017; 35:237-249. [PMID: 29044689 PMCID: PMC5808862 DOI: 10.1002/yea.3286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/31/2022] Open
Abstract
In recent decades Saccharomyces cerevisiae has proven to be one of the most valuable model organisms of aging research. Pathways such as autophagy or the effect of substances like resveratrol and spermidine that prolong the replicative as well as chronological lifespan of cells were described for the first time in S. cerevisiae. In this study we describe the establishment of an aging reporter that allows a reliable and relative quick screening of substances and genes that have an impact on the replicative lifespan. A cDNA library of the flatworm Dugesia tigrina that can be immortalized by beheading was screened using this aging reporter. Of all the flatworm genes, only one could be identified that significantly increased the replicative lifespan of S.cerevisiae. This gene is the cysteine protease cathepsin L that was sequenced for the first time in this study. We were able to show that this protease has the capability to degrade such proteins as the yeast Sup35 protein or the human α‐synuclein protein in yeast cells that are both capable of forming cytosolic toxic aggregates. The degradation of these proteins by cathepsin L prevents the formation of these unfolded protein aggregates and this seems to be responsible for the increase in replicative lifespan.
Collapse
Affiliation(s)
- Maria Karolin Streubel
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Johannes Bischof
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Jutta Duschl
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Wolfgang Liedl
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Herbert Wimmer
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Michael Breitenbach
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Manuela Weber
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Florian Geltinger
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Klaus Richter
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Feng B, Wang Z, Liu T, Jin R, Wang S, Wang W, Xiao G, Zhou Z. Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2345-56. [PMID: 25281825 DOI: 10.1016/j.bbadis.2014.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/27/2014] [Accepted: 09/24/2014] [Indexed: 12/30/2022]
Abstract
The D178N mutation of the prion protein (PrP) results in the hereditary prion disease fatal familial insomnia (FFI). Little is known regarding the effects of methionine oxidation on the pathogenesis of D178N-associated FFI. In the present study, we found that the D178N variant was more susceptible to oxidation than wild-type PrP, as indicated by reverse-phase high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) analysis. Circular dichroism (CD), differential scanning calorimetry (DSC), thioflavin T (ThT) binding assay studies demonstrated that methionine oxidation decreased the structural stability of the D178N variant, and the oxidized D178N variant exhibited a greater propensity to form β-sheet-rich oligomers and aggregates. Moreover, these aggregates of oxidized D178N PrP were more resistant to proteinase K (PK) digestion. Additionally, using fluorescence confocal microscopy, we detected a high degree of aggregation in D178N-transfected Neuro-2a (N2a) cells after treatment with hydrogen peroxide (H2O2). Furthermore, the oxidation and consequent aggregation of the D178N variant induced greater apoptosis of N2a cells, as monitored using flow cytometry. Collectively, these observations suggest that methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant, possibly providing direct evidence to link the pathogenesis of D178N-associated FFI with methionine oxidation.
Collapse
Affiliation(s)
- Boya Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zonglin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Ting Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Rui Jin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Shaobo Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Gengfu Xiao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China.
| | - Zheng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of the Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
5
|
Marshall KE, Offerdahl DK, Speare JO, Dorward DW, Hasenkrug A, Carmody AB, Baron GS. Glycosylphosphatidylinositol anchoring directs the assembly of Sup35NM protein into non-fibrillar, membrane-bound aggregates. J Biol Chem 2014; 289:12245-63. [PMID: 24627481 DOI: 10.1074/jbc.m114.556639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In prion-infected hosts, PrPSc usually accumulates as non-fibrillar, membrane-bound aggregates. Glycosylphosphatidylinositol (GPI) anchor-directed membrane association appears to be an important factor controlling the biophysical properties of PrPSc aggregates. To determine whether GPI anchoring can similarly modulate the assembly of other amyloid-forming proteins, neuronal cell lines were generated that expressed a GPI-anchored form of a model amyloidogenic protein, the NM domain of the yeast prion protein Sup35 (Sup35(GPI)). We recently reported that GPI anchoring facilitated the induction of Sup35(GPI) prions in this system. Here, we report the ultrastructural characterization of self-propagating Sup35(GPI) aggregates of either spontaneous or induced origin. Like membrane-bound PrPSc, Sup35(GPI) aggregates resisted release from cells treated with phosphatidylinositol-specific phospholipase C. Sup35(GPI) aggregates of spontaneous origin were detergent-insoluble, protease-resistant, and self-propagating, in a manner similar to that reported for recombinant Sup35NM amyloid fibrils and induced Sup35(GPI) aggregates. However, GPI-anchored Sup35 aggregates were not stained with amyloid-binding dyes, such as Thioflavin T. This was consistent with ultrastructural analyses, which showed that the aggregates corresponded to dense cell surface accumulations of membrane vesicle-like structures and were not fibrillar. Together, these results showed that GPI anchoring directs the assembly of Sup35NM into non-fibrillar, membrane-bound aggregates that resemble PrPSc, raising the possibility that GPI anchor-dependent modulation of protein aggregation might occur with other amyloidogenic proteins. This may contribute to differences in pathogenesis and pathology between prion diseases, which uniquely involve aggregation of a GPI-anchored protein, versus other protein misfolding diseases.
Collapse
Affiliation(s)
- Karen E Marshall
- From the Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana 59840
| | | | | | | | | | | | | |
Collapse
|
6
|
Ciaccioli G, Martins A, Rodrigues C, Vieira H, Calado P. A powerful yeast model to investigate the synergistic interaction of α-synuclein and tau in neurodegeneration. PLoS One 2013; 8:e55848. [PMID: 23393603 PMCID: PMC3564910 DOI: 10.1371/journal.pone.0055848] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022] Open
Abstract
Several studies revealed consistent overlap between synucleinopathies and tauopathies, demonstrating that α-synuclein (ASYN) and tau co-localize in neurofibrillary tangles and in Lewy bodies from Alzheimer’s and Parkinson’s disease patients and corresponding animal models. Additionally, it has been shown that ASYN can act as an initiator of tau aggregation and phosphorylation and that these two proteins directly interact. Despite these evidences, the cellular pathway implicated in this synergistic interaction remains to be clarified. The aim of this study was to create a yeast model where the concomitant expression of ASYN and tau can be used to perform genome wide screenings for the identification of genes that modulate this interaction, in order to shed light into the pathological mechanism of cell dysfunction and to provide new targets for future therapeutic intervention. We started by validating the synergistic toxicity of tau and ASYN co-expression in yeast, by developing episomal and integrative strains expressing WT and mutant forms of both proteins, alone or in combination. The episomal strains showed no differences in growth delay upon expression of ASYN isoforms (WT or A53T) alone or in combination with tau 2N/4R isoforms (WT or P301L). However, in these strains, the presence of ASYN led to increased tau insolubility and correlated with increased tau phosphorylation in S396/404, which is mainly mediated by RIM11, the human homolog of GSK3β in yeast. On the other hand, the integrative strains showed a strong synergistic toxic effect upon co-expression of ASYN WT and tau WT, which was related to high levels of intracellular ASYN inclusions and increased tau phosphorylation and aggregation. Taken together, the strains described in the present study are able to mimic relevant pathogenic features involved in neurodegeneration and are powerful tools to identify potential target genes able to modulate the synergistic pathway driven by ASYN and tau interaction.
Collapse
Affiliation(s)
- Gianmario Ciaccioli
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana Martins
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Cátia Rodrigues
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Helena Vieira
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- DEIO and BIOFig Center, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Patrícia Calado
- BIOALVO, Serviços Investigação e Desenvolvimento em Biotecnologia S.A., Edificio ICAT, Campus da FCUL, Campo Grande, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
7
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
8
|
Tyedmers J. Patterns of [PSI (+) ] aggregation allow insights into cellular organization of yeast prion aggregates. Prion 2012; 6:191-200. [PMID: 22449721 DOI: 10.4161/pri.18986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI (+) ] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.
Collapse
Affiliation(s)
- Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg (ZMBH, Heidelberg, Germany.
| |
Collapse
|
9
|
Staniforth GL, Tuite MF. Fungal prions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:417-56. [PMID: 22482457 DOI: 10.1016/b978-0-12-385883-2.00007-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.
Collapse
Affiliation(s)
- Gemma L Staniforth
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
10
|
Xu Z, Prigent S, Deslys JP, Rezaei H. Dual conformation of H2H3 domain of prion protein in mammalian cells. J Biol Chem 2011; 286:40060-8. [PMID: 21911495 DOI: 10.1074/jbc.m111.275255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The concept of prion is applied to protein modules that share the ability to switch between at least two conformational states and transmit one of these through intermolecular interaction and change of conformation. Although much progress has been achieved through the understanding of prions from organisms such as Saccharomyces cerevisiae, Podospora anserina, or Aplysia californica, the criteria that qualify a protein module as a prion are still unclear. In addition, the functionality of known prion domains fails to provide clues to understand the first identified prion, the mammalian infectious prion protein, PrP. To address these issues, we generated mammalian cellular models of expression of the C-terminal two helices of PrP, H2 and H3, which have been hypothesized, among other models, to hold the replication and conversion properties of the infectious PrP. We found that the H2H3 domain is an independent folding unit that undergoes glycosylations and glycosylphosphatidylinositol anchoring similar to full-length PrP. Surprisingly, in some conditions the normally folded H2H3 was able to systematically go through a conversion process and generate insoluble proteinase K-resistant aggregates. This structural switch involves the assembly of amyloid structures that bind thioflavin S and oligomers that are reactive to A11 antibody, which specifically detects protein oligomers from neurological disorders. Overall, we show that H2H3 is a conformational switch in a cellular context and is thus suggested to be a candidate for the conversion domain of PrP.
Collapse
Affiliation(s)
- Zhou Xu
- CEA, Institute of Emerging Diseases and Innovative Therapies, SEPIA, 92260 Fontenay-aux-Roses, France
| | | | | | | |
Collapse
|
11
|
Summers DW, Cyr DM. Use of yeast as a system to study amyloid toxicity. Methods 2011; 53:226-31. [PMID: 21115125 PMCID: PMC3432305 DOI: 10.1016/j.ymeth.2010.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 11/17/2022] Open
Abstract
The formation of amyloid-like fibrils is a hallmark of several neurodegenerative diseases. How the assembly of amyloid-like fibrils contributes to cell death is a major unresolved question in the field. The budding yeast Saccharomyces cerevisiae is a powerful model organism to study basic mechanisms for how cellular pathways regulate amyloid assembly and proteotoxicity. For example, studies of the amyloidogenic yeast prion [RNQ(+)] have revealed novel roles by which molecular chaperones protect cells from the accumulation of cytotoxic protein species. In budding yeast there are a variety of cellular assays that can be employed to analyze the assembly of amyloid-like aggregates and mechanistically dissect how cellular pathways influence proteotoxicity. In this review, we describe several assays that are routinely used to investigate aggregation and toxicity of the [RNQ(+)] prion in yeast.
Collapse
Affiliation(s)
- Daniel W. Summers
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill
| | - Douglas M. Cyr
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill
| |
Collapse
|
12
|
Kawai-Noma S, Pack CG, Kojidani T, Asakawa H, Hiraoka Y, Kinjo M, Haraguchi T, Taguchi H, Hirata A. In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. ACTA ACUST UNITED AC 2010; 190:223-31. [PMID: 20643880 PMCID: PMC2930275 DOI: 10.1083/jcb.201002149] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Correlative light and electron microscopy provides support for the linear amalgamation of yeast prion proteins. Yeast prion [PSI+] is caused by aggregated structures of the Sup35 protein. Although Sup35 forms typical amyloid fibrils in vitro, there is no direct evidence for the fibrillar structures of Sup35 in vivo. We analyzed [PSI+] cells in which Sup35 fused with green fluorescent protein (GFP) formed aggregates visible by fluorescence microscopy using thin-section electron microscopy (EM). Rapid-freeze EM combined with an immunogold-labeling technique as well as correlative light EM, which allows high-resolution imaging by EM of the same structure observed by light (fluorescence) microscopy, shows that the aggregates contain bundled fibrillar structures of Sup35-GFP. Additional biochemical and fluorescent correlation spectroscopy results suggest that the Sup35 oligomers diffused in the [PSI+] lysates adopt fibril-like shapes. Our findings demonstrate that [PSI+] cells contain Sup35 fibrillar structures closely related to those formed in vitro and provide insight into the molecular mechanism by which Sup35 aggregates are assembled and remodeled in [PSI+] cells.
Collapse
Affiliation(s)
- Shigeko Kawai-Noma
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Conversion of a yeast prion protein to an infectious form in bacteria. Proc Natl Acad Sci U S A 2010; 107:10596-601. [PMID: 20484678 DOI: 10.1073/pnas.0913280107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prions are infectious, self-propagating protein aggregates that have been identified in evolutionarily divergent members of the eukaryotic domain of life. Nevertheless, it is not yet known whether prokaryotes can support the formation of prion aggregates. Here we demonstrate that the yeast prion protein Sup35 can access an infectious conformation in Escherichia coli cells and that formation of this material is greatly stimulated by the presence of a transplanted [PSI(+)] inducibility factor, a distinct prion that is required for Sup35 to undergo spontaneous conversion to the prion form in yeast. Our results establish that the bacterial cytoplasm can support the formation of infectious prion aggregates, providing a heterologous system in which to study prion biology.
Collapse
|
14
|
Abstract
Prions are infectious proteins, in which self-propagating amyloid conformations of proteins are transmitted. The budding yeast Saccharomyces cerevisiae, one of the best-studied model eukaryotes, also has prions, and thus provides a tractable model system with which to understand the mechanisms of prion phenomena. The yeast prions are protein-based heritable elements, such as [PSI(+)], in which aggregates of prion proteins are transmitted to daughter cells in a non-Mendelian manner. Although the genetic approaches preceded the yeast prion studies, recent investigations of the dynamic aspects of the prion proteins have unraveled the molecular mechanisms by which prions are propagated and transmitted. In particular, several lines of evidence have revealed that the oligomeric species of prion proteins dispersed in the cytoplasm are critical for the transmission. This review summarizes the topics on the transmissible entities of yeast prions, focusing mainly on the Sup35 protein in [PSI(+)].
Collapse
Affiliation(s)
- Hideki Taguchi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan.
| | | |
Collapse
|
15
|
Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER. Aplysia CPEB Can Form Prion-like Multimers in Sensory Neurons that Contribute to Long-Term Facilitation. Cell 2010; 140:421-35. [DOI: 10.1016/j.cell.2010.01.008] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 07/20/2009] [Accepted: 01/05/2010] [Indexed: 11/24/2022]
|
16
|
Abstract
Amyloidogenesis is the aggregation of soluble proteins into structurally conserved fibers. Amyloid fibers are distinguished by their resistance to proteinase K, tinctorial properties and beta-sheet-rich secondary structure. Amyloid formation is a hallmark of many human diseases including Alzheimer's, Huntington's and the prion diseases. Therefore, understanding amyloidogenesis will provide insights into the development of therapeutics that target these debilitating diseases. A new class of ;functional' amyloids promises a unique glimpse at how nature has harnessed the amyloid fiber to accomplish important physiological tasks. Functional amyloids are produced by organisms spanning all aspects of cellular life. Herein we review amyloidogenesis, with special attention focused on the similarities and differences between the best characterized disease-associated amyloidogenic protein amyloid-beta and the formation of several functional amyloids. The implications of studying functional amyloidogenesis and the strategies organisms employ to limit exposure to toxic intermediates will also be discussed.
Collapse
Affiliation(s)
- Neal D Hammer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | | | |
Collapse
|
17
|
Nevzglyadova OV, Kuznetsova IM, Artemov AV, Mikhailova EV, Turoverov KK, Soidla TR. Comparative assay of amyloid and prion contents in yeast cells. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Taneja V, Maddelein ML, Talarek N, J. Saupe S, Liebman SW. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Mol Cell 2007; 27:67-77. [PMID: 17612491 PMCID: PMC1995001 DOI: 10.1016/j.molcel.2007.05.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/22/2007] [Accepted: 05/25/2007] [Indexed: 11/29/2022]
Abstract
Prions are self-propagating, infectious aggregates of misfolded proteins. The mammalian prion, PrP(Sc), causes fatal neurodegenerative disorders. Fungi also have prions. While yeast prions depend upon glutamine/asparagine (Q/N)-rich regions, the Podospora anserina HET-s and PrP prion proteins lack such sequences. Nonetheless, we show that the HET-s prion domain fused to GFP propagates as a prion in yeast. Analogously to native yeast prions, transient overexpression of the HET-s fusion induces ring-like aggregates that propagate in daughter cells as cytoplasmically inherited, detergent-resistant dot aggregates. Efficient dot propagation, but not ring formation, is dependent upon the Hsp104 chaperone. The yeast prion [PIN(+)] enhances HET-s ring formation, suggesting that prions with and without Q/N-rich regions interact. Finally, HET-s aggregates propagated in yeast are infectious when introduced into Podospora. Taken together, these results demonstrate prion propagation in a truly foreign host. Since yeast can host non-Q/N-rich prions, such native yeast prions may exist.
Collapse
Affiliation(s)
- Vibha Taneja
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | - Marie-Lise Maddelein
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR NRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Nicolas Talarek
- Hérédité Structurale et Prions Institut de Biochimie et de Génétique Cellulaire UMR 5095 CNRS-Universities de Bordeaux 2 33077 Bordeaux France, Present address, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, BOSTON, MA 02115, USA
| | - Sven J. Saupe
- Laboratoire de Génétique Moléculaire des Champignons, IBGC UMR NRS 5095, Université de Bordeaux 2, Bordeaux, France
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
- To whom correspondence should be addressed: , Phone: 312-996-4662, Fax: 312-413-2691
| |
Collapse
|
19
|
Abstract
The term prion has been used to describe self-replicating protein conformations that can convert other protein molecules of the same primary structure into its prion conformation. Several different proteins have now been found to exist as prions in Saccharomyces cerevisiae. Surprisingly, these heterologous prion proteins have a strong influence on each others' appearance and propagation, which may result from structural similarity between the prions. Both positive and negative effects of a prion on the de novo appearance of a heterologous prion have been observed in genetic studies. Other examples of reported interactions include mutual or unilateral inhibition and destabilization when two prions are present together in a single cell. In vitro work showing that one purified prion stimulates the conversion of a purified heterologous protein into a prion form, suggests that facilitation of de novo prion formation by heterologous prions in vivo is a result of a direct interaction between the prion proteins (a cross-seeding mechanism) and does not require other cellular components. However, other cellular structures, e.g., the cytoskeleton, may provide a scaffold for these interactions in vivo and chaperones can further facilitate or inhibit this process. Some negative prion-prion interactions may also occur via a direct interaction between the prion proteins. Another explanation is a competition between the prions for cellular factors involved in prion propagation or differential effects of chaperones stimulated by one prion on the heterologous prions.
Collapse
Affiliation(s)
- Irina L Derkatch
- Department of Microbiology, New York University School of Medicine, New York University Medical Center, New York, New York 10016, USA.
| | | |
Collapse
|
20
|
Liebman SW, Bagriantsev SN, Derkatch IL. Biochemical and genetic methods for characterization of [PIN+] prions in yeast. Methods 2006; 39:23-34. [PMID: 16793281 DOI: 10.1016/j.ymeth.2006.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022] Open
Abstract
The glutamine- and asparagine-rich Rnq1p protein in Saccharomyces cerevisiae can exist in the cell as a soluble monomer or in one of several aggregated, infectious, prion forms called [PIN(+)]. Interest in [PIN(+)] is heightened by its ability to promote the conversion of other proteins into a prion or an aggregated amyloid state. However, little is known about the function of Rnq1p, which makes it difficult to assay the phenotypes associated with its normal vs. prion forms. In this chapter, we describe methods used to detect [PIN(+)] and distinguish between different variations of the prion. Genetic methods are based on the ability of the [PIN(+)] prion to facilitate the appearance of another yeast prion, [PSI(+)], which has an easily detectable phenotype. Biochemical methods exploit the fact that the [PIN(+)] prion exists in the yeast cytosol in the form of large aggregates, composed of SDS-stable subparticles. Sucrose gradient centrifugation, agarose SDS electrophoresis and GFP fusions are used to distinguish between aggregates and subparticles from different [PIN(+)] variants.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois, Chicago, IL 60607, USA
| | | | | |
Collapse
|
21
|
Tuite MF, Cox BS. The [PSI+] prion of yeast: A problem of inheritance. Methods 2006; 39:9-22. [PMID: 16757178 DOI: 10.1016/j.ymeth.2006.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022] Open
Abstract
The [PSI(+)] prion of the yeast Saccharomyces cerevisiae was first identified by Brian Cox some 40 years ago as a non-Mendelian genetic element that modulated the efficiency of nonsense suppression. Following the suggestion by Reed Wickner in 1994 that such elements might be accounted for by invoking a prion-based model, it was subsequently established that the [PSI(+)] determinant was the prion form of the Sup35p protein. In this article, we review how a combination of classical genetic approaches and modern molecular and biochemical methods has provided conclusive evidence of the prion basis of the [PSI(+)] determinant. In so doing we have tried to provide a historical context, but also describe the results of more recent experiments aimed at elucidating the mechanism by which the [PSI(+)] (and other yeast prions) are efficiently propagated in dividing cells. While understanding of the [PSI(+)] prion and its mode of propagation has, and will continue to have, an impact on mammalian prion biology nevertheless the very existence of a protein-based mechanism that can have a beneficial impact on a cell's fitness provides equally sound justification to fully explore yeast prions.
Collapse
Affiliation(s)
- Mick F Tuite
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | |
Collapse
|
22
|
Bagriantsev SN, Kushnirov VV, Liebman SW. Analysis of amyloid aggregates using agarose gel electrophoresis. Methods Enzymol 2006; 412:33-48. [PMID: 17046650 DOI: 10.1016/s0076-6879(06)12003-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid aggregates are associated with a number of mammalian neurodegenerative diseases. Infectious aggregates of the mammalian prion protein PrP(sc) are hallmarks of transmissible spongiform encephalopathies in humans and cattle (Griffith, 1967; Legname et al., 2004; Prusiner, 1982; Silveira et al., 2004). Likewise, SDS-stable aggregates and low-n oligomers of the Abeta peptide (Selkoe et al., 1982; Walsh et al., 2002) cause toxic effects associated with Alzheimer's disease (Selkoe, 2004). The discovery of prions in lower eukaryotes, for example, yeast prions [PSI(+)], [PIN(+)], and [URE3] suggested that prion phenomena may represent a fundamental process that is widespread among living organisms (Chernoff, 2004; Uptain and Lindquist, 2002; Wickner, 1994; Wickner et al., 2004). These protein structures are more stable than other cellular protein complexes, which generally dissolve in SDS at room temperature. In contrast, the prion polymers withstand these conditions, while losing their association with their non-prion partners. These bulky protein particles cannot be analyzed in polyacrylamide gels, because their pores are too small to allow the passage and acceptable resolution of the large complexes. This problem was first circumvented by Kryndushkin et al. (2003), who used Western blots of protein complexes separated on agarose gels to analyze the sizes of SDS-resistant protein complexes associated with the yeast prion [PSI(+)]. Further studies have used this approach to characterize [PSI(+)] (Allen et al., 2005; Bagriantsev and Liebman, 2004; Salnikova et al., 2005), and another yeast prion [PIN(+)] (Bagriantsev and Liebman, 2004). In this chapter, we use this method to assay amyloid aggregates of recombinant proteins Sup35NM and Abeta42 and present protocols for Western blot analysis of high molecular weight (>5 MDa) amyloid aggregates resolved in agarose gels. The technique is suitable for the analysis of any large proteins or SDS-stable high molecular weight complexes.
Collapse
|
23
|
Abstract
Changes in protein conformation drive most biological processes, but none have seized the imagination of scientists and the public alike as have the self-replicating conformations of prions. Prions transmit lethal neurodegenerative diseases by means of the food chain. However, self-replicating protein conformations can also constitute molecular memories that transmit genetic information. Here, we showcase definitive evidence for the prion hypothesis and discuss examples in which prion-encoded heritable information has been harnessed during evolution to confer selective advantages. We then describe situations in which prion-enciphered events might have essential roles in long-term memory formation, transcriptional memory and genome-wide expression patterns.
Collapse
Affiliation(s)
- James Shorter
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
24
|
Bagriantsev S, Liebman SW. Specificity of prion assembly in vivo. [PSI+] and [PIN+] form separate structures in yeast. J Biol Chem 2004; 279:51042-8. [PMID: 15465809 DOI: 10.1074/jbc.m410611200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast prions [PSI+] and [PIN+] are self-propagating amyloid aggregates of the Gln/Asn-rich proteins Sup35p and Rnq1p, respectively. Like the mammalian PrP prion "strains," [PSI+] and [PIN+] exist in different conformations called variants. Here, [PSI+] and [PIN+] variants were used to model in vivo interactions between co-existing heterologous amyloid aggregates. Two levels of structural organization, like those previously described for [PSI+], were demonstrated for [PIN+]. In cells with both [PSI+] and [PIN+] the two prions formed separate structures at both levels. Also, the destabilization of [PSI+] by certain [PIN+] variants was shown not to involve alterations in the [PSI+] prion size. Finally, when two variants of the same prion that have aggregates with distinct biochemical characteristics were combined in a single cell, only one aggregate type was propagated. These studies demonstrate the intracellular organization of yeast prions and provide insight into the principles of in vivo amyloid assembly.
Collapse
|
25
|
Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci U S A 2004; 101:12934-9. [PMID: 15326312 PMCID: PMC516497 DOI: 10.1073/pnas.0404968101] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prions are infectious protein conformations that are generally ordered protein aggregates. In the absence of prions, newly synthesized molecules of these same proteins usually maintain a conventional soluble conformation. However, prions occasionally arise even without a homologous prion template. The conformational switch that results in the de novo appearance of yeast prions with glutamine/aspargine (Q/N)-rich prion domains (e.g., [PSI+]), is promoted by heterologous prions with a similar domain (e.g., [RNQ+], also known as [PIN+]), or by overexpression of proteins with prion-like Q-, N-, or Q/N-rich domains. This finding led to the hypothesis that aggregates of heterologous proteins provide an imperfect template on which the new prion is seeded. Indeed, we show that newly forming Sup35 and preexisting Rnq1 aggregates always colocalize when [PSI+] appearance is facilitated by the [RNQ+] prion, and that Rnq1 fibers enhance the in vitro formation of fibers by the prion domain of Sup35 (NM). The proteins do not however form mixed, interdigitated aggregates. We also demonstrate that aggregating variants of the polyQ-containing domain of huntingtin promote the de novo conversion of Sup35 into [PSI+]; whereas nonaggregating variants of huntingtin and aggregates of non-polyQ amyloidogenic proteins, transthyretin, alpha-synuclein, and synphilin do not. Furthermore, transthyretin and alpha-synuclein amyloids do not facilitate NM aggregation in vitro, even though in [PSI+] cells NM and transthyretin aggregates also occasionally colocalize. Our data, especially the in vitro reproduction of the highly specific heterologous seeding effect, provide strong support for the hypothesis of cross-seeding in the spontaneous initiation of prion states.
Collapse
Affiliation(s)
- Irina L Derkatch
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kimura Y, Koitabashi S, Kakizuka A, Fujita T. The role of pre-existing aggregates in Hsp104-dependent polyglutamine aggregate formation and epigenetic change of yeast prions. Genes Cells 2004; 9:685-96. [PMID: 15298677 DOI: 10.1111/j.1356-9597.2004.00759.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amyloid-like protein aggregates have been implicated in various diseases and in the protein-based inheritance of yeast prions. The molecular chaperone Hsp104 has been shown to be necessary for the aggregate formation of polyglutamine in yeast, and for the maintenance of several yeast prion phenotypes through the formation of self-propagating aggregates. In this paper, we show that the polyglutamine aggregates that are formed independently of Hsp104, are required for Hsp104 to efficiently produce more aggregates. Similarly, in the yeast prion [PSI+] system, Hsp104-dependent epigenetic changes to the [PSI+] prion phenotype require the presence of prion aggregates in the normal [psi-] state. We also show that the co-localization of different prion aggregates suggests that cross-seeding by different yeast prions increases the probability of Hsp104-dependent epigenetic change. These findings highlight the role of pre-existing aggregates in chaperone-dependent establishment of the epigenetic trait in yeast prions, and possibly in the pathology of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoko Kimura
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, 3-18-22, Honkomagome, Bunkyo, 113-8613, Japan.
| | | | | | | |
Collapse
|
27
|
Abstract
Prions constitute a rare class of protein, which can switch to a robust amyloid form and then propagate that form in the absence of a nucleic acid determinant, thereby creating a unique, protein-only infectious agent. Details of the mechanism that drives conversion to the prion form and then subsequent propagation of that form are beginning to emerge using a range of in vivo and in vitro approaches. Recent studies on both mammalian and fungal prions are providing a greater understanding of the structural features that distinguish prions from non-transmissible amyloids.
Collapse
Affiliation(s)
- Mick F Tuite
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | |
Collapse
|
28
|
Abstract
The prion hypothesis proposes that proteins can act as infectious agents. Originally formulated to explain transmissible spongiform encephalopathies (TSEs), the prion hypothesis has been extended with the finding that several non-Mendelian traits in fungi are due to heritable changes in protein conformation, which may in some cases be beneficial. Although much remains to be learned about the specific role of cellular cofactors, mechanistic parallels between the mammalian and yeast prion phenomena point to universal features of conformation-based infection and inheritance involving propagation of ordered beta-sheet-rich protein aggregates commonly referred to as amyloid. Here we focus on two such features and discuss recent efforts to explain them in terms of the physical properties of amyloid-like aggregates. The first is prion strains, wherein chemically identical infectious particles cause distinct phenotypes. The second is barriers that often prohibit prion transmission between different species. There is increasing evidence suggesting that both of these can be manifestations of the same phenomenon: the ability of a protein to misfold into multiple self-propagating conformations. Even single mutations can change the spectrum of favored misfolded conformations. In turn, changes in amyloid conformation can shift the specificity of propagation and alter strain phenotypes. This model helps explain many common and otherwise puzzling features of prion inheritance as well as aspects of noninfectious diseases involving toxic misfolded proteins.
Collapse
Affiliation(s)
- Peter Chien
- Graduate Group in Biophysics, Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94107-2240, USA.
| | | | | |
Collapse
|
29
|
Shorter J, Lindquist S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 2004; 304:1793-7. [PMID: 15155912 DOI: 10.1126/science.1098007] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The protein-remodeling factor Hsp104 governs inheritance of [PSI+], a yeast prion formed by self-perpetuating amyloid conformers of the translation termination factor Sup35. Perplexingly, either excess or insufficient Hsp104 eliminates [PSI+]. In vitro, at low concentrations, Hsp104 catalyzed the formation of oligomeric intermediates that proved critical for the nucleation of Sup 35 fibrillization de novo and displayed a conformation common among amyloidogenic polypeptides. At higher Hsp104 concentrations, amyloidogenic oligomerization and contingent fibrillization were abolished. Hsp104 also disassembled mature fibers in a manner that initially exposed new surfaces for conformational replication but eventually exterminated prion conformers. These Hsp104 activities differed in their reaction mechanism and can explain [PSI+] inheritance patterns.
Collapse
Affiliation(s)
- James Shorter
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|