1
|
Zhou Z, Li Y, Ma X, Cao B, Peng T, Sheng Y, Peng H, Li R, Cao Y, Xi R, Li F, Wang M, Sun H, Zhang G, Zhang H, Hu K, Xiao W, Wang F. Identification of a Novel TAR RNA-Binding Protein 2 Modulator with Potential Therapeutic Activity against Hepatocellular Carcinoma. J Med Chem 2021; 64:7404-7421. [PMID: 34038111 DOI: 10.1021/acs.jmedchem.1c00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Imbalance miRNAs contribute to tumor formation; therefore, the development of small-molecule compounds that regulate miRNA biogenesis is an important strategy in oncotherapy. Here, (-)-Gomisin M1 (GM) was found to modulate miRNA biogenesis to inhibit the proliferation, migration, and invasion of hepatocellular carcinoma (HCC) cells. GM modulated expression profiles of miRNA and protein in HCC cells and suppressed tumor growth in a mouse model. Mechanistically, GM affected miRNA maturation by targeting TAR RNA-binding protein 2 (TRBP), with an efficacy higher than that of enoxacin, and promoted the binding of TRBP with Dicer. Structural simplification and a preliminary structure-activity relationship study via the synthesis of 20 GM derivatives showed that compound 9 exhibited more potent inhibitory activity in HCC cell proliferation and affinity for TRBP than did GM. These results suggest that TRBP may be a novel potential therapeutic target in HCC and compound 9 may be a potential drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Biyun Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipan Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runze Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Mengru Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
2
|
Navarro SL, Levy L, Curtis KR, Elkon I, Kahsai OJ, Ammar HS, Randolph TW, Hong NN, Carnevale Neto F, Raftery D, Chapkin RS, Lampe JW, Hullar MAJ. Effect of a Flaxseed Lignan Intervention on Circulating Bile Acids in a Placebo-Controlled Randomized, Crossover Trial. Nutrients 2020; 12:E1837. [PMID: 32575611 PMCID: PMC7374341 DOI: 10.3390/nu12061837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Plant lignans and their microbial metabolites, e.g., enterolactone (ENL), may affect bile acid (BA) metabolism through interaction with hepatic receptors. We evaluated the effects of a flaxseed lignan extract (50 mg/day secoisolariciresinol diglucoside) compared to a placebo for 60 days each on plasma BA concentrations in 46 healthy men and women (20-45 years) using samples from a completed randomized, crossover intervention. Twenty BA species were measured in fasting plasma using LC-MS. ENL was measured in 24-h urines by GC-MS. We tested for (a) effects of the intervention on BA concentrations overall and stratified by ENL excretion; and (b) cross-sectional associations between plasma BA and ENL. We also explored the overlap in bacterial metabolism at the genus level and conducted in vitro anaerobic incubations of stool with lignan substrate to identify genes that are enriched in response to lignan metabolism. There were no intervention effects, overall or stratified by ENL at FDR < 0.05. In the cross-sectional analysis, irrespective of treatment, five secondary BAs were associated with ENL excretion (FDR < 0.05). In vitro analyses showed positive associations between ENL production and bacterial gene expression of the bile acid-inducible gene cluster and hydroxysteroid dehydrogenases. These data suggest overlap in community bacterial metabolism of secondary BA and ENL.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Lisa Levy
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Keith R. Curtis
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Isaac Elkon
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Orsalem J. Kahsai
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Hamza S. Ammar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Timothy W. Randolph
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Natalie N. Hong
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; (N.N.H.); (F.C.N.)
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; (N.N.H.); (F.C.N.)
| | - Daniel Raftery
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; (N.N.H.); (F.C.N.)
| | - Robert S. Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843, USA;
| | - Johanna W. Lampe
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| | - Meredith A. J. Hullar
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (L.L.); (K.R.C.); (I.E.); (O.J.K.); (H.S.A.); (T.W.R.); (D.R.); (J.W.L.); (M.A.J.H.)
| |
Collapse
|