1
|
Kim S, Min H, Nah J, Jeong J, Park K, Kim W, Lee Y, Kim J, An J, Seong RH. Defective N-glycosylation in tumor-infiltrating CD8 + T cells impairs IFN-γ-mediated effector function. Immunol Cell Biol 2023; 101:610-624. [PMID: 37114567 DOI: 10.1111/imcb.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
T cell-mediated antitumor immunity is modulated, in part, by N-glycosylation. However, the interplay between N-glycosylation and the loss of effector function in exhausted T cells has not yet been fully investigated. Here, we delineated the impact of N-glycosylation on the exhaustion of tumor-infiltrating lymphocytes in a murine colon adenocarcinoma model, focusing on the IFN-γ-mediated immune response. We found that exhausted CD8+ T cells downregulated the oligosaccharyltransferase complex, which is indispensable for N-glycan transfer. Concordant N-glycosylation deficiency in tumor-infiltrating lymphocytes leads to loss of antitumor immunity. Complementing the oligosaccharyltransferase complex restored IFN-γ production and alleviated CD8+ T cell exhaustion, resulting in reduced tumor growth. Thus, aberrant glycosylation induced in the tumor microenvironment incapacitates effector CD8+ T cells. Our findings provide insights into CD8+ T cell exhaustion by incorporating N-glycosylation to understand the characteristic loss of IFN-γ, opening new opportunities to amend the glycosylation status in cancer immunotherapies.
Collapse
Affiliation(s)
- Soyeon Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyungyu Min
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jinwoo Nah
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jinguk Jeong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Kyungsoo Park
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Wooseob Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Youngjin Lee
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jieun Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Rho Hyun Seong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kanzaki H, Shinohara F, Suzuki M, Wada S, Miyamoto Y, Yamaguchi Y, Katsumata Y, Makihira S, Kawai T, Taubman MA, Nakamura Y. A-Disintegrin and Metalloproteinase (ADAM) 17 Enzymatically Degrades Interferon-gamma. Sci Rep 2016; 6:32259. [PMID: 27573075 PMCID: PMC5004192 DOI: 10.1038/srep32259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic cytokine that exerts anti-tumor and anti-osteoclastogenic effects. Although transcriptional and post-transcriptional regulation of IFN-γ is well understood, subsequent modifications of secreted IFN-γ are not fully elucidated. Previous research indicates that some cancer cells escape immune surveillance and metastasize into bone tissue by inducing osteoclastic bone resorption. Peptidases of the a-disintegrin and metalloproteinase (ADAM) family are implicated in cancer cell proliferation and tumor progression. We hypothesized that the ADAM enzymes expressed by cancer cells degrades IFN-γ and attenuates IFN-γ-mediated anti-tumorigenic and anti-osteoclastogenic effects. Recombinant ADAM17 degraded IFN-γ into small fragments. The addition of ADAM17 to the culture supernatant of stimulated mouse splenocytes decreased IFN-γ concentration. However, ADAM17 inhibition in the stimulated mouse T-cells prevented IFN-γ degradation. ADAM17-expressing human breast cancer cell lines MCF-7 and MDA-MB-453 also degraded recombinant IFN-γ, but this was attenuated by ADAM17 inhibition. Degraded IFN-γ lost the functionality including the inhibititory effect on osteoclastogenesis. This is the first study to demonstrate the extracellular proteolytic degradation of IFN-γ by ADAM17. These results suggest that ADAM17-mediated degradation of IFN-γ may block the anti-tumorigenic and anti-osteoclastogenic effects of IFN-γ. ADAM17 inhibition may be useful for the treatment of attenuated cancer immune surveillance and/or bone metastases.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan.,Tohoku University Hospital, Maxillo-Oral Disorders, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi pref. 980-8575, Japan
| | - Fumiaki Shinohara
- Tohoku University Graduate School of Dentistry, Oral Microbiology, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi pref. 980-8575, Japan
| | - Maiko Suzuki
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, 02142, USA.,Department Mineralized Tissue Biology, 245 First Street, Cambridge, MA 02142, USA
| | - Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yutaka Miyamoto
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yuuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| | - Seicho Makihira
- Section of Fixed Prosthodontics, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshi Kawai
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, 02142, USA.,Harvard School of Dental Medicine, Department of Oral Medicine, Infection, and Immunity, Boston, MA 02115, USA
| | - Martin A Taubman
- The Forsyth Institute, Department of Immunology and Infectious Diseases, 245 First Street, Cambridge, MA, 02142, USA.,Harvard School of Dental Medicine, Department of Developmental Biology, Boston, MA 02115, USA
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa pref., 230-8501, Japan
| |
Collapse
|
3
|
Waters WR, Palmer MV, Thacker TC, Orloski K, Nol P, Harrington NP, Olsen SC, Nonnecke BJ. Blood culture and stimulation conditions for the diagnosis of tuberculosis in cervids by the Cervigam assay. Vet Rec 2008; 162:203-8. [DOI: 10.1136/vr.162.7.203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | | | | | - K. Orloski
- National Tuberculosis Eradication Program; Veterinary Services
| | - P. Nol
- National Wildlife Research Center; Animal and Plant Health Inspection Service (APHIS), USDA; Fort Collins CO 80521 USA
| | - N. P. Harrington
- Ottawa Laboratory Fallowfield; Canadian Food Inspection Agency; Ottawa Ontario K2H 8P9 Canada
| | | | - B. J. Nonnecke
- Periparturient Diseases of Cattle Research Project; National Animal Disease Center; Agricultural Research Service; United States Department of Agriculture (USDA); Ames Iowa 50010 USA
| |
Collapse
|
4
|
Iolascon A, Aglio V, Tamma G, D'Apolito M, Addabbo F, Procino G, Simonetti MC, Montini G, Gesualdo L, Debler EW, Svelto M, Valenti G. Characterization of two novel missense mutations in the AQP2 gene causing nephrogenic diabetes insipidus. Nephron Clin Pract 2006; 105:p33-41. [PMID: 17192724 DOI: 10.1159/000098136] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 10/13/2006] [Indexed: 01/10/2023] Open
Abstract
Here, we report the aquaporin 2 (AQP2) mutational analysis of a patient with nephrogenic diabetes insipidus heterozygote due to two novel missense mutations. Direct sequencing of DNA in the male patient revealed that he was compound heterozygote for two mutations in the AQP2 gene: a thymine-to-adenine transversion at position 450 (c.450T>A) in exon 2 and a guanine-to-thymine at nucleotide position 643 (c.643G>T) in exon 4. The double heterozygous 450T>A and 643G>T transversion causes the amino acid substitution D150E and G215C. Direct sequencing of exons 2 and 4 of the AQP2 gene from each of the parents revealed that the c.450T>A mutation was inherited from the father while the c.643G>T mutation was inherited from the mother. Analysis of AQP2 excretion demonstrated that no AQP2 was detectable in the urine of the proband, whereas normal AQP2 levels were measured in both parents. When expressed in renal cells, both proteins were retarded in the endoplasmic reticulum and no redistribution was observed after forskolin stimulation. Of note, homology modeling revealed that the two mutations involve two highly conserved residues providing important clues about the role of the wt residues in AQP2 stability and function.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Biochemistry and Biomedical Technologies, University Federico II--CEINGE, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Vandenbroeck K, Martens E, Alloza I. Multi-chaperone complexes regulate the folding of interferon-gamma in the endoplasmic reticulum. Cytokine 2006; 33:264-73. [PMID: 16574426 DOI: 10.1016/j.cyto.2006.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 01/18/2006] [Accepted: 02/07/2006] [Indexed: 11/19/2022]
Abstract
The quality control mechanisms directing the folding of cytokines in the endoplasmic reticulum (ER) are poorly understood. We have investigated ER chaperone usage by the cytokine interferon-gamma (IFN-gamma). ATP-depletion or inhibition of N-glycosylation was found to cause IFN-gamma to accumulate into detergent-insoluble aggregates in the ER. Six chaperones, GRP94, GRP78, ERp72, PDI, CaBP1/P5 and CRT were found to associate with IFN-gamma during its steady state folding. Interaction of the five first chaperones with IFN-gamma was regulated co-ordinately by ATP. These chaperones were recently reported to be part of a multi-chaperone complex involved in the folding of complex, multi-subunit proteins. Our data suggest that also proteins with a relatively simple quaternary structure such as cytokines may fold in association with this complex. In addition, we identified calreticulin as the major chaperone interacting with IFN-gamma, and the related class II cytokine interleukin-10, during heat-shock in vivo. IFN-gamma was maintained in a folding-competent form by calreticulin during heat-shock and released during subsequent recovery at 37 degrees C. This interaction was observed in both recombinant (CHO-F11) and natural producer cells (Jurkat, NK-92MI) of IFN-gamma. Since cytokines such as IFN-gamma and IL-10 are frequently produced in the course of inflammatory conditions associated with fever, the thermo-protective effect of calreticulin may constitute a previously unrecognized component of the cellular cytokine production machinery, of likely relevance in sustaining cytokine folding and secretion in pathophysiological conditions.
Collapse
Affiliation(s)
- Koen Vandenbroeck
- Applied Genomics Research Group, School of Pharmacy & Center for Cancer Research & Cell Biology (CCRCB), Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | |
Collapse
|
6
|
Marr N, Bichet DG, Hoefs S, Savelkoul PJM, Konings IBM, De Mattia F, Graat MPJ, Arthus MF, Lonergan M, Fujiwara TM, Knoers NVAM, Landau D, Balfe WJ, Oksche A, Rosenthal W, Müller D, Van Os CH, Deen PMT. Cell-biologic and functional analyses of five new Aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 2002; 13:2267-77. [PMID: 12191971 DOI: 10.1097/01.asn.0000027355.41663.14] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the Aquaporin-2 gene, which encodes a renal water channel, have been shown to cause autosomal nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin. Most AQP2 missense mutants in recessive NDI are retained in the endoplasmic reticulum (ER), but AQP2-T125M and AQP2-G175R were reported to be nonfunctional channels unimpaired in their routing to the plasma membrane. In five families, seven novel AQP2 gene mutations were identified and their cell-biologic basis for causing recessive NDI was analyzed. The patients in four families were homozygous for mutations, encoding AQP2-L28P, AQP2-A47V, AQP2-V71M, or AQP2-P185A. Expression in oocytes revealed that all these mutants, and also AQP2-T125M and AQP2-G175R, conferred a reduced water permeability compared with wt-AQP2, which was due to ER retardation. The patient in the fifth family had a G>A nucleotide substitution in the splice donor site of one allele that results in an out-of-frame protein. The other allele has a nucleotide deletion (c652delC) and a missense mutation (V194I). The routing and function of AQP2-V194I in oocytes was not different from wt-AQP2; it was therefore concluded that c652delC, which leads to an out-of-frame protein, is the NDI-causing mutation of the second allele. This study indicates that misfolding and ER retention is the main, and possibly only, cell-biologic basis for recessive NDI caused by missense AQP2 proteins. In addition, the reduced single channel water permeability of AQP2-A47V (40%) and AQP2-T125M (25%) might become of therapeutic value when chemical chaperones can be found that restore their routing to the plasma membrane.
Collapse
Affiliation(s)
- Nannette Marr
- Department of Cell Physiology, UMC St. Radboud, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lanningham-Foster L, Green CL, Langkamp-Henken B, Davis BA, Nguyen KT, Bender BS, Cousins RJ. Overexpression of CRIP in transgenic mice alters cytokine patterns and the immune response. Am J Physiol Endocrinol Metab 2002; 282:E1197-203. [PMID: 12006348 DOI: 10.1152/ajpendo.00508.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteine-rich intestinal protein (CRIP), which contains a double zinc finger motif, is a member of the Group 2 LIM protein family. Our results showed that the developmental regulation of CRIP in neonates was not influenced by conventional vs. specific pathogen-free housing conditions. Thymic and splenic CRIP expression was not developmentally regulated. A line of transgenic (Tg) mice that overexpress the rat CRIP gene was created. When challenged with lipopolysaccharide, the Tg mice lost more weight, exhibited increased mortality, experienced greater diarrhea incidence, and had less serum interferon-gamma (IFN-gamma) and more interleukin (IL)-6 and IL-10. Similarly, splenocytes from the Tg mice produced less IFN-gamma and IL-2 and more IL-10 and IL-6 upon mitogen stimulation. Delayed-type hypersensitivity response was less in the Tg mice. Influenza virus infection produced greater weight loss in the Tg mice, which also showed delayed viral clearance. The observed responses to overexpression of the CRIP gene are consistent with a role for this LIM protein in a cellular pathway that produces an imbalance in cytokine pattern favoring Th2 cytokines.
Collapse
Affiliation(s)
- Lorraine Lanningham-Foster
- Food Science and Human Nutrition Department, Center for Nutritional Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|