1
|
Fan M, Guo M, Chen G, Rakotondrabe TF, Muema FW, Hu G. Exploring potential inhibitors of acetylcholinesterase, lactate dehydrogenases, and glutathione reductase from Hagenia abyssinica (Bruce) J.F. Gmel. based on multi-target ultrafiltration-liquid chromatography-mass spectrometry and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118356. [PMID: 38763372 DOI: 10.1016/j.jep.2024.118356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| | - Tojofaniry Fabien Rakotondrabe
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Wambua Muema
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangwan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-Africa Joint Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430299, China
| |
Collapse
|
2
|
Sahebi K, Shahsavani F, Mehravar F, Hatam G, Alimi R, Radfar A, Bahreini MS, Pouryousef A, Teimouri A. In vitro and in vivo anti-parasitic activity of curcumin nanoemulsion on Leishmania major (MRHO/IR/75/ER). BMC Complement Med Ther 2024; 24:238. [PMID: 38890586 PMCID: PMC11184741 DOI: 10.1186/s12906-024-04522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
The present study aimed to assess the anti-leishmanial effects of curcumin nanoemulsion (CUR-NE) against Leishmania major (MRHO/IR/75/ER) in both in vitro and in vivo experiments. CUR-NE was successfully prepared via the spontaneous emulsification method. The in vitro effect of various concentrations of CUR-NE against L. major promastigotes was assessed using the flow cytometry method. In vivo experiments were carried out in BALB/c mice inoculated subcutaneously with 2 × 106 L. major promastigotes. Mice were treated with topical CUR-NE (2.5 mg/ml), intra-lesion injection of CUR-NE (2.5 mg/ml), topical CUR suspension (CUR-S, 2.5 mg/ml), topical NE without CUR (NE-no CUR), amphotericin B as the positive control group, and infected untreated mice as the negative control group. In vitro exposure of promastigotes to CUR-NE showed a dose-dependent anti-leishmanial effect, with a 67.52 ± 0.35% mortality rate at a concentration of 1250 µg/ml and an IC50 of 643.56 µg/ml. In vivo experiments showed that topical CUR-NE and CUR-S significantly decreased the mean lesion size in mice after four weeks from 4.73 ± 1.28 to 2.78 ± 1.28 mm and 4.45 ± 0.88 to 3.23 ± 0.59 mm, respectively (p = 0.001). Furthermore, CUR-NE significantly decreased the parasite load in treated mice compared with the negative control group (p = 0.001). Results from the current study demonstrated the promising activity of CUR-NE against L. major in both in vitro and in vivo experiments. Moreover, CUR-NE was more efficient than CUR-S in healing and reducing parasite burden in mouse models. Future studies should aim to identify molecular mechanisms as well as the pharmacologic and pharmacokinetic aspects of CUR-NE.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shahsavani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mehravar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Pouryousef
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Fulgheri F, Aroffu M, Ramírez M, Román-Álamo L, Peris JE, Usach I, Nacher A, Manconi M, Fernàndez-Busquets X, Manca ML. Curcumin or quercetin loaded nutriosomes as oral adjuvants for malaria infections. Int J Pharm 2023; 643:123195. [PMID: 37394159 DOI: 10.1016/j.ijpharm.2023.123195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Artemisinin, curcumin or quercetin, alone or in combination, were loaded in nutriosomes, special phospholipid vesicles enriched with Nutriose FM06®, a soluble dextrin with prebiotic activity, that makes these vesicles suitable for oral delivery. The resulting nutriosomes were sized between 93 and 146 nm, homogeneously dispersed, and had slightly negative zeta potential (around -8 mV). To improve their shelf life and storability over time, vesicle dispersions were freeze-dried and stored at 25 °C. Results confirmed that their main physico-chemical characteristics remained unchanged over a period of 12 months. Additionally, their size and polydispersity index did not undergo any significant variation after dilution with solutions at different pHs (1.2 and 7.0) and high ionic strength, mimicking the harsh conditions of the stomach and intestine. An in vitro study disclosed the delayed release of curcumin and quercetin from nutriosomes (∼53% at 48 h) while artemisinin was quickly released (∼100% at 48 h). Cytotoxicity assays using human colon adenocarcinoma cells (Caco-2) and human umbilical vein endothelial cells (HUVECs) proved the high biocompatibility of the prepared formulations. Finally, in vitro antimalarial activity tests, assessed against the 3D7 strain of Plasmodium falciparum, confirmed the effectiveness of nutriosomes in the delivery of curcumin and quercetin, which can be used as adjuvants in the antimalaria treatment. The efficacy of artemisinin was also confirmed but not improved. Overall results proved the possible use of these formulations as an accompanying treatment of malaria infections.
Collapse
Affiliation(s)
- Federica Fulgheri
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy
| | - Matteo Aroffu
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy
| | - Miriam Ramírez
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Lucía Román-Álamo
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - José Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
| | - Amparo Nacher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - Maria Manconi
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy.
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Maria Letizia Manca
- Dept. of Life and Environmental Sciences of the University of Cagliari, University Campus, Pad. A, S.P. Monserrato-Sestu Km 0.700, Monserrato 09042, CA, Italy
| |
Collapse
|
4
|
Teimouri A, Jafarpour Azami S, Hashemi Hafshejani S, Ghanimatdan M, Bahreini MS, Alimi R, Sadjjadi SM. Protoscolicidal effects of curcumin nanoemulsion against protoscoleces of Echinococcus granulosus. BMC Complement Med Ther 2023; 23:124. [PMID: 37072845 PMCID: PMC10111725 DOI: 10.1186/s12906-023-03927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND The aim of the present study was to assess in vitro protoscolicidal effects of curcumin nanoemulsion (CUR-NE) against protoscoleces of cystic echinococcosis (CE)/hydatid cysts. METHODS The CUR-NE was prepared via spontaneous emulsification of soybean as the oil phase, a mixture of Tween 80 and Tween 85 as the surfactant, ethanol as the co-surfactant and distilled water. Various concentrations of CUR-NE (156, 312, 625 and 1250 µg/ml) were exposed to collected protoscoleces of infected sheep liver hydatid cysts for 10, 20, 30, 60 and 120 min. Viability of the protoscoleces were assessed using eosin exclusion test. Morphological changes of the protoscoleces were observed using differential interference contrast (DIC) microscopy. RESULTS The mean particle size and zeta potential of CUR-NE included 60.4 ± 14.8 nm and - 16.1 ± 1.1 mV, respectively. Results showed that the viability of the protoscoleces decreased significantly with increases in CUR-NE concentrations (p < 0.001). The mortality rates of protoscoleces with exposure to concentrations of 1250 and 625 µg/ml of CUR-NE for 60 min were 94 and 73.33%, respectively. Mortality of the protoscoleces was 100% after 120 min of exposure to 1250 and 625 µg/ml concentrations of CUR-NE. Using NIC microscopy, extensively altered tegumental surface protoscoleces was observed after protoscoleces exposure to CUR-NE. CONCLUSION The findings of the present study revealed the in vitro protoscolicidal potential of CUR-NE. Therefore, CUR-NEs are addressed as novel protoscolicidal agents, which can be used as an alternative natural medicine to kill the protoscoleces, owing to their low toxicity and significant inhibition potency. However, further studies are necessary to investigate pharmacologic and pharmacokinetics of CUR-NEs.
Collapse
Affiliation(s)
- Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Jafarpour Azami
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hashemi Hafshejani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ghanimatdan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Mahmoud Sadjjadi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Piperine Enhances the Antimalarial Activity of Curcumin in Plasmodium berghei ANKA-Infected Mice: A Novel Approach for Malaria Prophylaxis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7897163. [PMID: 36106028 PMCID: PMC9467801 DOI: 10.1155/2022/7897163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Malaria is a prevalent vector-borne infectious disease in tropical regions, particularly in the absence of effective vaccines and because of the emergence resistance of Plasmodium to available antimalarial drugs. An alternative strategy for malaria eradication could be the combination of existing compounds that possess antimalarial activity to target multiple stages of the parasite. This study evaluated the antimalarial activity of a combination of curcumin and piperine in mice. A total of 42 mice were assigned to six groups depending on the treatment administered: group I (normal group) with aquadest; group II (negative control) with 0.2 ml DMSO; group III received a standard malarial drug (artesunate 5 mg/kg BW); groups IV, V, and VI with curcumin 300 mg/kg BW, curcumin 300 mg/kg BW and piperine 20 mg/kg BW, and piperine 20 mg/kg BW, respectively. The antimalarial activity was evaluated using prophylactic assays in Plasmodium berghei ANKA-infected mice, including the percentage parasitemia, clinical signs, survival rate, serum biochemical analysis, parasitic load in the liver, and liver histopathology. All treatments showed significant (p < 0.05) antiplasmodial activity, with considerable parasite inhibition (>50%), curcumin 300 mg/kg BW (60.22%), curcumin 300 mg/kg BW, and piperine 20 mg/kg BW (77.94%) except for piperine 20 mg/kg BW (47.20%), eliciting greater inhibition relative to that of artesunate (51.18%). The delayed onset of clinical symptoms and prolonged survival rate were also significant (p < 0.05) in the combination of curcumin and piperine treated group. In addition, the low parasitic load in the liver and mild histopathological changes in the liver suggest that the combination of curcumin and piperine had synergistic or additive effects. These findings demonstrate the promising use of these combined compounds as a malarial prophylactic. Further studies were recommended to assess their clinical usefulness.
Collapse
|
6
|
Boonhok R, Sangkanu S, Phumjan S, Jongboonjua R, Sangnopparat N, Kwankaew P, Tedasen A, Lim CL, Pereira MDL, Rahmatullah M, Wilairatana P, Wiart C, Dolma KG, Paul AK, Gupta M, Nissapatorn V. Curcumin effect on Acanthamoeba triangularis encystation under nutrient starvation. PeerJ 2022; 10:e13657. [PMID: 35811814 PMCID: PMC9261923 DOI: 10.7717/peerj.13657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Background Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level. Methods In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR. Results A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment. Conclusion Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.
Collapse
Affiliation(s)
- Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Suganya Phumjan
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Ramita Jongboonjua
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Nawarat Sangnopparat
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Aman Tedasen
- Department of Medical Technology, School of Allied Health Sciences, and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Rachathewee, Bangkok, Thailand
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Thai Buri, Nakhon Si Thammarat, Thailand
| |
Collapse
|
7
|
Martínez-González JDJ, Ríos-Morales SL, Guevara-Flores A, Ramos-Godinez MDP, López-Saavedra A, Rendón JL, Del Arenal Mena IP. Evaluating the effect of curcumin on the metacestode of Taenia crassiceps. Exp Parasitol 2022; 239:108319. [PMID: 35777452 DOI: 10.1016/j.exppara.2022.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
Curcumin, a curcuminoid present in the rhizome of the plant Curcuma longa has multiple pharmacological effects including anticarcinogenic and anti-inflammatory properties. This work evaluates the anthelmintic effect of the curcumin molecule (98% pure) on Taenia crassiceps cysticerci viability in vitro. Cysticerci incubated in the presence of increasing concentrations of curcumin showed a dose-dependent mortality correlated with a significant increase in the production of reactive oxygen species and a partial inhibition of thioredoxin-glutathione reductase, the only disulfide reductase present in these parasites. At 500 μM curcumin, a 100% of cysticerci lethality was obtained after 2 h of treatment. These results suggest the curcumin-induced oxidative stress could be in the origin of the anthelminthic effect of curcumin. Mice with cysticerci were injected intraperitoneally with 20, 40, or 60 mM curcumin daily for 30 days. A decrease in the burden of cysticerci (46%) was observed with a 60 mM dose of curcumin, supporting this compound as a potential anthelmintic drug.
Collapse
Affiliation(s)
- José de Jesús Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Sandra Lizeth Ríos-Morales
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - María Del Pilar Ramos-Godinez
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía, Instituto Nacional de Cancerología, Red de Apoyo a la Investigación (RAI), 14080, Mexico City, Mexico
| | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico
| | - Irene Patricia Del Arenal Mena
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Alinejad S, Khademvatan S, Amani S, Asadi N, Tappeh KH, Yousefi E, Miandoabi T. The Effect of Curcumin on the Expression of INFγ, TNF-α, and iNOS Genes in PBMCs Infected with Leishmania major [MRHO/IR/75/ER]. Infect Disord Drug Targets 2022; 22:83-89. [PMID: 35379161 DOI: 10.2174/1871526522666220404083220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Leishmaniasis, caused by the Leishmania parasite, is one of the most important tropical neglected diseases. The urgent search for effective, inexpensive, and preferably herbal anti-leishmanial agents, is needed. OBJECTIVE Curcumin is a natural polyphenolic compound derived from turmeric that is well known for its antioxidant, anti-inflammatory, anti-tumor, and anti-cancer activity. METHODS The present work evaluates the anti-leishmanial [Leishmania major] activity of curcumin. The infected PBMCs were treated with curcumin. The ROS level at 6, 12, 24 h and gene expression levels at 24, 48, and 72 h of PBMCs after treatment with curcumin were determined. RESULTS Based on the results, the curcumin concentrations of 268 μM [24 h] and 181.2 μM [72 h] were defined as IC50 against L. major promastigotes. Treatment of L. major infected-peripheral blood mononuclear cells [PBMCs] with IC50 concentrations of curcumin, depending on exposure time, significantly induced the reactive oxygen species [ROS] generation and increased the expression levels of interferongamma [IFN-γ], tumor necrosis factor-alpha [TNF-α], and nitric oxide synthase [iNOS] genes. CONCLUSION These findings suggest the potential of curcumin against Leishmaniasis.
Collapse
Affiliation(s)
- Soheila Alinejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahla Amani
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Negar Asadi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Khosrow Hazrati Tappeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Yousefi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Touraj Miandoabi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute & Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
9
|
Saeed BQ, Hussain K, Akbar N, Khan H, Siddiqui R, Shah RM, Khan NA. Nanovesicles containing curcumin hold promise in the development of new formulations of anti-Acanthamoebic agents. Mol Biochem Parasitol 2021; 247:111430. [PMID: 34813865 DOI: 10.1016/j.molbiopara.2021.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
In this study, curcumin-nanoformulations were tested for anti-Acanthamoebic properties. Curcumin-loaded nanovesicles were synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and atomic force microscopy. Using amoebicidal assay, the effects of curcumin-nanoformulations were investigated against A. castellanii belonging to the T4 genotype. To determine the effects of curcumin-nanoformulations on host cells, cytotoxicity assays were performed using human keratinocyte cells (HaCat). The results revealed that nanovesicles formulation of curcumin enhanced the anti-Acanthamoebic effects of curcumin as compared with curcumin alone. The viability decreased with increasing concentration of curcumin and/or lipid-based carrier (Noisome) (FCBR18) in a dose-dependent manner. Curcumin and curcumin-loaded nanovesicles exhibited minimal cytotoxic effects against human cells in all tested concentrations. Both concentrations of FCBR18 proved effective in inhibiting amoebae excystation. In contrast, curcumin alone showed insignificant effects against amoebae excystation. Taken together, these findings clearly showed that curcumin-loaded nanovesicles show enhanced anti-Acanthamoebic efficacy without harming human cells, and these nanotherapeutics may hold promise in the development of new formulations of anti-Acanthamoebic agents.
Collapse
Affiliation(s)
- Balsam Qubais Saeed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Kashif Hussain
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Hamza Khan
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Raza Muhammad Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, United Arab Emirates.
| |
Collapse
|
10
|
Bahrami A, Montecucco F, Carbone F, Sahebkar A. Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8972074. [PMID: 34692844 PMCID: PMC8528582 DOI: 10.1155/2021/8972074] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023]
Abstract
Aging is characterized by a progressive inability to maintain homeostasis, self-repair, renewal, performance, and fitness of different tissues throughout the lifespan. Senescence is occurring following enormous intracellular or extracellular stress stimuli. Cellular senescence serves as an antiproliferative process that causes permanent cell cycle arrest and restricts the lifespan. Senescent cells are characterized by terminal cell cycle arrest, enlarged lysosome, and DNA double-strand breaks as well as lipofuscin granularity, senescence-associated heterochromatin foci, and activation of DNA damage response. Curcumin, a hydrophobic polyphenol, is a bioactive chemical constituent of the rhizomes of Curcuma longa Linn (turmeric), which has been extensively used for the alleviation of various human disorders. In addition to its pleiotropic effects, curcumin has been suggested to have antiaging features. In this review, we summarized the therapeutic potential of curcumin in the prevention and delaying of the aging process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Albalawi AE, Alanazi AD, Sharifi I, Ezzatkhah F. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol 2021; 66:797-811. [PMID: 33770343 DOI: 10.1007/s11686-021-00351-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/10/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In recent years, antimonial agents and other synthetic antileishmanial drugs, such as amphotericin B, paromomycin, and many other drugs, have restrictions in use due to the toxicity risk, high cost, and emerging resistance to these drugs. The present study aimed to review the antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations on leishmaniasis. METHODS The present study was carried out according to the 06-preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline and registered in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility (SyRF) database. Some English-language databases including PubMed, Google Scholar, Web of Science, EBSCO, Science Direct, and Scopus were searched for publications worldwide related to antileishmanial effects of curcumin, its derivatives, and other relevant pharmaceutical formulations, without date limitation, to identify all the published articles (in vitro, in vivo, and clinical studies). Keywords included "curcumin", "Curcuma longa", "antileishmanial", "Leishmania", "leishmaniasis", "cutaneous leishmaniasis", "visceral leishmaniasis", "in vitro", and "in vivo". RESULTS Out of 5492 papers, 29 papers including 20 in vitro (69.0%), 1 in vivo (3.4%), and 8 in vitro/in vivo (27.6%) studies conducted up to 2020, met the inclusion criteria for discussion in this systematic review. The most common species of the Leishmania parasite used in these studies were L. donovani (n = 13, 44.8%), L. major (n = 10, 34.5%), and L. amazonensis (n = 6, 20.7%), respectively. The most used derivatives in these studies were curcumin (n = 15, 33.3%) and curcuminoids (n = 5, 16.7%), respectively. CONCLUSION In the present review, according to the studies in the literature, various forms of drugs based on curcumin and their derivatives exhibited significant in vitro and in vivo antileishmanial activity against different Leishmania spp. The results revealed that curcumin and its derivatives could be considered as an alternative and complementary source of valuable antileishmanial components against leishmaniasis, which had no significant toxicity. However, further studies are required to elucidate this concluding remark, especially in clinical settings.
Collapse
Affiliation(s)
| | - Abdullah D Alanazi
- Department of Biological Science, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
- Alghad International Colleges for Applied Medical Science, Tabuk 47913, Saudi Arabia
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
12
|
Fattahi Bafghi A, Haghirosadat BF, Yazdian F, Mirzaei F, Pourmadadi M, Pournasir F, Hemati M, Pournasir S. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotechnol 2021; 51:990-997. [PMID: 34060984 DOI: 10.1080/10826068.2021.1885045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Several side effects and drug resistance accompany the current therapies for Leishmaniasis. Nanoliposomal curcumin is applied as a new therapy approach instead of current therapy. In this study, nanoliposomal curcumin was prepared using thin-film hydration method and characterized based on encapsulation efficiency, size, and zeta potential. Curcumin was successfully loaded into nanoliposomes with an encapsulation efficiency of 92%. The surface charge of the nanoparticle was neutral, and the size of nanoparticle was 176.5 nm. Nanoliposomal curcumin is in spherical shape without any agglomeration. Cell viability assay was performed on HFF cell line to show biocompatibility of liposome nanoparticles. Anti-Leishmanial effect of different concentrations of liposomal curcumin (0.05-30 μg mL-1) and amphotericin B (25 μg mL-1) were studied on Leishmania major [MRHO/IR/75/ER] at various hours (24, 48, and 72) using hemocytometer technique. Nanoliposomal curcumin inhibitory concentration (IC50) at hours 24, 48, and 72 were 6.41, 3.8, and 2.33 µg mL-1, respectively. As prepared nanoliposomal curcumin showed a significant antileishmanial effect and induced a better and more tangible effect on the survival of L. major promastigotes and could be suitable candidates for further investigations.
Collapse
Affiliation(s)
- Ali Fattahi Bafghi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Bibi Fatemeh Haghirosadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Farzaneh Mirzaei
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Fahimeh Pournasir
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdie Hemati
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Soheila Pournasir
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
13
|
Hashemi N, Ommi D, Kheyri P, Khamesipour F, Setzer WN, Benchimol M. A review study on the anti-trichomonas activities of medicinal plants. Int J Parasitol Drugs Drug Resist 2021; 15:92-104. [PMID: 33610966 PMCID: PMC7902805 DOI: 10.1016/j.ijpddr.2021.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
The parasitic diseases represent the most important health risk, especially in underdeveloped countries where they have a deep impact on public health. Trichomoniasis is a prevalent non-viral sexually transmitted disease, and a significant amount of new cases are identified each year globally. Furthermore, the infection is linked with serious concerns such as pregnancy outcomes, infertility, predisposition to cervical and prostate cancer, and increased transmission and acquisition of HIV. The therapy is restricted, adverse effects are often observed, and resistance to the drugs is emerging. Based on this, a new treatment for trichomoniasis is necessary. Natural products represent a rich source of bioactive compounds, and even today, they are used in the search for new drugs. Additionally, natural products provide a wide variety of leadership structures that can be used by the pharmaceutical industry as a template in the development of new drugs that are more effective and have fewer or no undesirable side effects compared to current treatments. This review focuses on the medicinal plants that possess anti-trichomonal activity in vitro or in vivo. An electronic database search was carried out covering the last three decades, i.e., 1990-2020. The literature search revealed that almost a dozen isolated phytoconstituents are being explored globally for their anti-trichomonal activity. Simultaneously, many countries have their own traditional or folk medicine for trichomoniasis that utilizes their native plants, as a whole, or even extracts. This review focuses mainly on the human parasite Trichomonas vaginalis. However, at some points mention is also made to Tritrichomonas foetus that causes trichomoniasis in animals of high veterinary and economical interest. We will focus on the plants and plant-based compounds and their anti-trichomonal activity. The literature search highlighted that there are abundant compounds that possess anti-trichomonal activity; however, in-depth in-vivo evaluation of compounds and their clinical evaluation has not been undertaken. There is a critical need for new anti-trichomonal compounds, and focused research on phytoconstituents can provide the way forward.
Collapse
Affiliation(s)
- Nooshin Hashemi
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Davood Ommi
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parya Kheyri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Marlene Benchimol
- Universidade do Grande Rio (UNIGRANRIO) and UFRJ (Universidade Federal do Rio de Janeiro), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Grover M, Behl T, Sachdeva M, Bungao S, Aleya L, Setia D. Focus on Multi-targeted Role of Curcumin: a Boon in Therapeutic Paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18893-18907. [PMID: 33595796 DOI: 10.1007/s11356-021-12809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Curcumin is a polyphenolic compound that exhibited good anticancer potential against different types of cancers through its multi-targeted effect like the termination of cell proliferation, inflammation, angiogenesis, and metastasis, thereby acting as antiproliferative and cytotoxic in nature. The present review surveys the various drug combination tried with curcumin or its synthetic analogues and also the mechanism by which curcumin potentiates the effect of almost every drug. In addition, this article also focuses on aromatherapy which is gaining much popularity in cancer patients. After thoroughly studying several articles on combination therapy of curcumin through authenticated book chapters, websites, research, and review articles available at PubMed, ScienceDirect, etc., it has been observed that multi-targeted curcumin possess enormous anticancer potential and, with whatever drug it is given in combination, has always resulted in enhanced effect with reduced dose as well as side effects. It is also capable enough in overcoming the problem of chemoresistance. Besides this, aromatherapy also proved its potency in reducing cancer-related side effects. Combining all the factors together, we can conclude that combination therapy of drugs with curcumin should be explored extensively. In addition, aromatherapy can be used as an adjuvant or supplementary therapy to reduce the cancer complications in patients.
Collapse
Affiliation(s)
- Madhuri Grover
- B.S. Anangpuria Institute of Pharmacy, Alampur, Haryana, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Simona Bungao
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Dhruv Setia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
15
|
Jafarpour Azami S, Mohammad Rahimi H, Mirjalali H, Zali MR. Unravelling Toxoplasma treatment: conventional drugs toward nanomedicine. World J Microbiol Biotechnol 2021; 37:48. [PMID: 33566198 DOI: 10.1007/s11274-021-03000-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/08/2021] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii is a worldwide protozoan parasite that infects almost all warm-blooded animals. Although human toxoplasmosis is mostly latent, pregnant women and immunocompromised patients need effective treatment. There are drugs of choice for treatment of toxoplasmosis; however, due to their side effects and/or their disease stage-specificity, prescription of them is limited. During recent years, nanomedicine has been employed to overcome limitations of conventional drugs. Here, we provided a state-of-the-art review of experimental toxoplasmosis treatment using nanotechnology.
Collapse
Affiliation(s)
- Sanaz Jafarpour Azami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Elamin M, Al-Olayan E, Abdel-Gaber R, Yehia RS. Anti-proliferative and apoptosis induction activities of curcumin on Leishmania major. Rev Argent Microbiol 2021; 53:240-247. [PMID: 33531168 DOI: 10.1016/j.ram.2020.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/05/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis is a major vector-borne disease triggered by an obligate intracellular protozoan parasite of the genus Leishmania and transmitted by the bite of phlebotomine female sand flies. This parasite causes a wide range of human diseases, from localized self-healing cutaneous lesions to fatal visceral infections. The aim of this study was to investigate the cytotoxic, antiproliferative, and apoptotic effects of curcumin on Leishmania major promastigotes (MHOM/SA/84/JISH) and to assess these effects on the cell cycle of promastigotes. The MTT colorimetric assay was used to evaluate the cytotoxicity and proliferation of promastigotes. Additionally, flow cytometry was used to analyze the cell cycle. The Annexin V/propidium iodide staining technique followed by flow cytometry was used to study the cell death induced by curcumin. In this study curcumin showed a potent antileishmanial effect, exhibiting cytotoxicity against L. major promastigotes. At 80μM, the survival in curcumin treated promastigotes reached 22%; however, the median lethal concentration of curcumin (LC50) was 35μM. The drug exerted its cytotoxic effect by inducing apoptosis. Curcumin-induced cell death in promastigotes reached 82.5% at 80μM concentration. In addition, curcumin delayed the cell cycle in the S-phase inhibiting cell proliferation. Thus, curcumin was shown to be effective against L. major promastigotes. Therefore, curcumin merits further research studies to demonstrate its efficacy in treating cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Maha Elamin
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ebtsam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Ramy S Yehia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
17
|
In vivo assessment of the antischistosomal activity of curcumin loaded nanoparticles versus praziquantel in the treatment of Schistosoma mansoni. Sci Rep 2020; 10:15742. [PMID: 32978497 PMCID: PMC7519097 DOI: 10.1038/s41598-020-72901-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis is a serious parasitic infection affecting millions worldwide. This study aimed to explore the anti-schistosomal activity of curcumin and curcumin loaded gold-nanoparticles (Cur-GNPs) with or without praziquantel (PZQ). We used six groups of the C57BL/6 mice in which five groups were infected with Schistosoma Mansoni (S. mansoni) cercariae and exhibited, separately, to different treatment regimens of curcumin, curcumin loaded nanoparticle, and PZQ, in addition to one untreated group which acts as a control. Mice were sacrificed at the 8th week where both worms and eggs were counted in the hepatic and porto-mesenteric vessels in the liver and intestine, respectively, in addition to a histopathological examination of the liver granuloma. Curcumin caused a significant reduction in the worms and egg count (45.45%) at the 3rd week. A significant schistosomicidal effect of PZQ was found in all groups. Cur-GNPs combined with PZQ 97.4% reduction of worm burden in the 3rd week and the highest reduction in the intestinal and hepatic egg content, as well, besides 70.1% reduction of the granuloma size. The results suggested the curcumin in combination with PZQ as a strong schistosomicidal regimen against S. mansoni as it alters the hematological, biochemical, and immunological changes induced.
Collapse
|
18
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
19
|
Gondim BLC, da Silva Catarino J, de Sousa MAD, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, de Lima Nascimento TR, Machado JR, Rodrigues V, Oliveira CJF, Cançado Castellano LR, da Silva MV. Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS. Curr Pharm Des 2020; 25:3983-3996. [PMID: 31612822 DOI: 10.2174/1381612825666191014171354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Parasitic infections affecting the central nervous system (CNS) present high morbidity and mortality rates and affect millions of people worldwide. The most important parasites affecting the CNS are protozoans (Plasmodium sp., Toxoplasma gondii, Trypanosoma brucei), cestodes (Taenia solium) and free-living amoebae (Acantamoeba spp., Balamuthia mandrillaris and Naegleria fowleri). Current therapeutic regimens include the use of traditional chemicals or natural compounds that have very limited access to the CNS, despite their elevated toxicity to the host. Improvements are needed in drug administration and formulations to treat these infections and to allow the drug to cross the blood-brain barrier (BBB). METHODS This work aims to elucidate the recent advancements in the use of nanoparticles as nanoscaled drug delivery systems (NDDS) for treating and controlling the parasitic infections that affect the CNS, addressing not only the nature and composition of the polymer chosen, but also the mechanisms by which these nanoparticles may cross the BBB and reach the infected tissue. RESULTS There is a strong evidence in the literature demonstrating the potential usefulness of polymeric nanoparticles as functional carriers of drugs to the CNS. Some of them demonstrated the mechanisms by which drugloaded nanoparticles access the CNS and control the infection by using in vivo models, while others only describe the pharmacological ability of these particles to be utilized in in vitro environments. CONCLUSION The scarcity of the studies trying to elucidate the compatibility as well as the exact mechanisms by which NDDS might be entering the CNS infected by parasites reveals new possibilities for further exploratory projects. There is an urgent need for new investments and motivations for applying nanotechnology to control parasitic infectious diseases worldwide.
Collapse
Affiliation(s)
- Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, Paraíba, Brazil
| | - Jonatas da Silva Catarino
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Mariana de Oliveira Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcela Rezende Lemes
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Juliana Reis Machado
- Department of Pathology, Genetics and Evolution, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
20
|
Saberi R, Fakhar M, Asfaram S, Akhtari J, Nakhaei M, Keighobadi M. A Systematic Literature Review of Curcumin with Promising Antileishmanial Activity. Infect Disord Drug Targets 2020; 21:363-369. [PMID: 32448108 DOI: 10.2174/1871526520666200525013458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin (CUR) is a bright yellow chemical and it is used as an additive in foods. Recently CUR and its associated bioactive compounds have received much attention in the literature review. The aim of this systematic review is to overview the antileishmanial properties of CUR and its mechanism; perhaps the results of this study will be used for therapeutic and preventive purposes. METHODS Following the PRISMA guidelines, international databases were systematically searched for studies published until September 2019. Articles related to the subject were selected and included in this systematic review. RESULTS A total of 15 articles met our eligibility criteria. Then, the effect of CUR and its associated bioactive compounds on Leishmania species was evaluated. In most studies, CUR/derivatives were tested on L. major and in vitro condition. Most investigations were conducted on the promastigote rather than the more relevant intracellular amastigote stage. Our results showed that CUR overcomes the inhibitory effect of nitric oxide (NO) on Leishmania parasites. CONCLUSION This review indicated that CUR derivatives, instead of CUR alone showed a high potential to serve as an effective herbal drug against leishmaniasis. Moreover, we concluded that the antileishmanial activity of CUR/bioactive compounds is mostly due to increased oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Reza Saberi
- Department of Parasitology, Toxoplasmosis Research Center, School of Medicine, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, School of Medicine, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Shabnam Asfaram
- Department of Parasitology, Toxoplasmosis Research Center, School of Medicine, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Nakhaei
- Department of Parasitology, Toxoplasmosis Research Center, School of Medicine, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| | - Masoud Keighobadi
- Department of Parasitology, Toxoplasmosis Research Center, School of Medicine, Mazandaran University of Medical Sciences, P.O Box: 48471-91971, Sari, Iran
| |
Collapse
|
21
|
Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, Santos CAD. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev Anti Infect Ther 2020; 18:367-379. [PMID: 32067524 DOI: 10.1080/14787210.2020.1730815] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Curcumin is an important bioactive compound present in Curcuma longa, and is well known for its bioactivities such as anti-inflammatory, anticancer, antimicrobial, antiparasitic and antioxidant activity. The use of curcumin is limited owing to its poor solubility in water, fast degradation, and low bioavailability. This problem can be solved by using nano-curcumin, which is soluble in water and enhances its activity against various microbial pathogens and parasites.Areas covered: We have reviewed curcumin, curcumin-loaded nanoparticles and their activities against various pathogenic microbes (antifungal, antiviral and antiprotozoal) and parasites, as curcumin has already demonstrated broad-spectrum antimicrobial activity. It has also inhibited biofilm formation by various bacteria including Pseudomonas aeruginosa. The antimicrobial activity of curcumin can be increased in the presence of light radiation due to its photo-excitation. Further, it has been found that the activity of curcumin nanoparticles is enhanced when used in combination with antibiotics. Finally, we discussed the toxicity and safety issues of curcumin.Expert opinion: Since many microbial pathogens have developed resistance to antibiotics, the combination of curcumin with different nanoparticles will prove to be a boon for their treatment. Moreover, curcumin and curcumin-loaded nanoparticles can also be used against various parasites.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Avinash P Ingle
- Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Lorena, Brazil
| | - Raksha Pandit
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Priti Paralikar
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Netravati Anasane
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | | |
Collapse
|
22
|
Guevara-Flores A, Martínez-González JDJ, Herrera-Juárez ÁM, Rendón JL, González-Andrade M, Torres Durán PV, Enríquez-Habib RG, del Arenal Mena IP. Effect of curcuminoids and curcumin derivate products on thioredoxin-glutathione reductase from Taenia crassiceps cysticerci. Evidence suggesting a curcumin oxidation product as a suitable inhibitor. PLoS One 2019; 14:e0220098. [PMID: 31329647 PMCID: PMC6645542 DOI: 10.1371/journal.pone.0220098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
Curcuma is a traditional ingredient of some Eastern cuisines, and the spice is heralded for its antitumoral and antiparasitic properties. In this report, we examine the effect of the curcuminoides which include curcumin, demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC), as well as curcumin degradation products on thioredoxin glutathione reductase from Taenia crassiceps cysticerci Results revealed that both DMC and BDMC were inhibitors of TGR activity in the micromolar concentration range. By contrast, the inhibitory ability of curcumin was a time-dependent process. Kinetic and spectroscopical evidence suggests that an intermediary compound of curcumin oxidation, probably spiroepoxide, is responsible. Preincubation of curcumin in the presence of NADPH, but not glutathione disulfide (GSSG), resulted in the loss of its inhibitory ability, suggesting a reductive stabilizing effect. Similarly, preincubation of curcumin with sulfhydryl compounds fully protected the enzyme from inhibition. Degradation products were tested for their inhibitory potential, and 4-vinylguaiacol was the best inhibitor (IC50 = 12.9 μM), followed by feruloylmethane (IC50 = 122 μM), vanillin (IC50 = 127 μM), and ferulic aldehyde (IC50 = 180 μM). The acid derivatives ferulic acid (IC50 = 465 μM) and vanillic acid (IC50 = 657 μM) were poor inhibitors. On the other hand, results from docking analysis revealed a common binding site on the enzyme for all the compounds, albeit interacting with different amino acid residues. Dissociation constants obtained from the docking were in accord with the inhibitory efficiency of the curcumin degradation products.
Collapse
Affiliation(s)
- Alberto Guevara-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Juan Luis Rendón
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martín González-Andrade
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Raúl Guillermo Enríquez-Habib
- Departamento de Química Analítica, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
23
|
Scolicidal Effects of Chitosan-Curcumin Nanoparticles on the Hydatid Cyst Protoscolices. Acta Parasitol 2019; 64:367-375. [PMID: 31087261 DOI: 10.2478/s11686-019-00054-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE In the current era, cystic echinococcosis (CE), as larval stage of Echinococcus granulosus, is considered as a threat to human health. Scolicidal agents used in the surgery of cysts have different side effects. Therefore, the present study aimed to assess the effects of chitosan nanoparticles containing curcumin (Ch-Cu NPs) on the protoscolices of the hydatid cyst in vitro. METHODS Ch-Cu NPs were synthesized using a simple co-precipitation method and their structural and morphological properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), zeta analyzer, and Fourier transform infrared (FT-IR) spectroscopy. Then, the effects of different concentrations of Ch-Cu NPs (0.25, 0.05, 1, 2, and 4 mg/mL) on the fatality rate, and the length and width of protoscolices in different times (5, 10, 20, 30, and 60 min) were investigated. In addition, the SEM technique was used to evaluate the structure of the protoscolices after treatment. RESULTS Based on the results, the presence of curcumin on the chitosan nanoparticles was confirmed by FT-IR analysis. Further, XRD analysis approved the crystal structure of chitosan NPs. Furthermore, the highest fatality rate was 68% in 4 mg/mL concentration of Ch-Cu NPs. The length and width of protoscolices decreased based on the high concentrations of Ch-Cu NPs, compared to the control group. CONCLUSION Finally, Ch-Cu NPs expressed good scolicidal activities, which made them suitable to be considered as an anti-protoscolex agent.
Collapse
|
24
|
Ganapathy G, Preethi R, Moses J, Anandharamakrishnan C. Diarylheptanoids as nutraceutical: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019; 19:101109. [PMID: 32288931 PMCID: PMC7102868 DOI: 10.1016/j.bcab.2019.101109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/28/2022]
Abstract
Phenolic compounds are naturally occurring compounds present ubiquitously in plants. They have potential health benefits and substantiate evidence for their nutraceutical applications. Diarylheptanoids are part of the broad class of plant phenolics with structurally divergent compounds. They have been used in traditional medicines and homemade remedies to treat various ailments, as organoleptic additives in foods, and also for aesthetic purposes. With their potential therapeutic and organoleptic characteristics, diarylhepatanoids can be rightly termed as nutraceuticals. This review summarizes the wide range of pharmacological activities of diarylhepatanoids and nutraceutical formulations, with relevance to human health.
Collapse
Affiliation(s)
- G. Ganapathy
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| | - R. Preethi
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| | - J.A. Moses
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| | - C. Anandharamakrishnan
- Computational modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology, Thanjavur 613005, India
| |
Collapse
|
25
|
Basmaciyan L, Robinson DR, Azas N, Casanova M. (De)glutamylation and cell death in Leishmania parasites. PLoS Negl Trop Dis 2019; 13:e0007264. [PMID: 31017892 PMCID: PMC6502457 DOI: 10.1371/journal.pntd.0007264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/06/2019] [Accepted: 02/26/2019] [Indexed: 11/18/2022] Open
Abstract
Trypanosomatids are flagellated protozoan parasites that are very unusual in terms of cytoskeleton organization but also in terms of cell death. Most of the Trypanosomatid cytoskeleton consists of microtubules, forming different substructures including a subpellicular corset. Oddly, the actin network appears structurally and functionally different from other eukaryotic actins. And Trypanosomatids have an apoptotic phenotype under cell death conditions, but the pathways involved are devoid of key mammal proteins such as caspases or death receptors, and the triggers involved in apoptotic induction remain unknown. In this article, we have studied the role of the post-translational modifications, deglutamylation and polyglutamylation, in Leishmania. We have shown that Leishmania apoptosis was linked to polyglutamylation and hypothesized that the cell survival process autophagy was linked to deglutamylation. A balance seems to be established between polyglutamylation and deglutamylation, with imbalance inducing microtubule or other protein modifications characterizing either cell death if polyglutamylation was prioritized, or the cell survival process of autophagy if deglutamylation was prioritized. This emphasizes the role of post-translational modifications in cell biology, inducing cell death or cell survival of infectious agents. Leishmania are unique unicellular organisms in terms of cytoskeleton organization and mechanisms of cell death. For example, the major cytoskeletal components of these parasites are microtubules, which form a subpellicular corset. In terms of cell death, an apoptotic phenotype has been characterized in Leishmania but the pathways remain unknown, being devoid of key mammal cell death proteins. In a previous article, we demonstrated that the cytoskeleton of this parasite is extensively glutamylated but, paradoxically, overexpression or inhibition of polyglutamylase expression have limited visible cellular consequences. In this manuscript, we have highlighted the link between polyglutamylation and Leishmania cell death, suggesting the importance of the polyglutamylation/deglutamylation balance in this parasite. Further, we have identified, for the first time in Leishmania, deglutamylases, among which one that, in an original manner, deglutamylates glutamates at branching points but also long glutamate side chains. This work emphasizes the role of post-translational modifications as essential regulators of protein function, not only of mammal cells such as neurons or ciliated/flagellated cells, but also of infectious agents. This work suggests an important and discernible “live or die”—“cell death or autophagy” balance pathway and the conceptual mechanism that is involved in cellular decision making.
Collapse
Affiliation(s)
- Louise Basmaciyan
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | | | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- * E-mail:
| |
Collapse
|
26
|
Ali BH, Marrif H, Noureldayem SA, Bakheit AO, Blunden G. Some Biological Properties of Curcumin: A Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Curcumin (diferuloyl methane), a small-molecular weight compound isolated from the roots of Curcuma longa L. (family Zingiberaceae), has been used traditionally for centuries in Asia for medicinal, culinary and other purposes. A large number of in vitro and in vivo studies in both animals and man have indicated that curcumin has strong antioxidant, anti-carcinogenic, anti-inflammatory, anti-angiogenic, antispasmodic, antimicrobial, anti-parasitic and other activities. The mechanisms of some of these actions have recently been intensively investigated. Curcumin inhibits the promotion/ progression stage of carcinogenesis by induction of apoptosis and the arrest of cancer cells in the S, G2/M cell cycle phase. The compound inhibits the activity of growth factor receptors. The anti-inflammatory properties of curcumin are mediated through their effects on cytokines, lipid mediators, eicosanoids and proteolytic enzymes. Curcumin scavenges the superoxide radical, hydrogen peroxide and nitric oxide, and inhibits lipid peroxidation. These actions may be the basis for many of its pharmacological and therapeutic properties. Curcumin is a nutraceutical of low toxicity, which has been used successfully in a number of medical conditions that include cataracts, cystic fibrosis, and prostate and colon cancers.
Collapse
Affiliation(s)
- Badreldin H. Ali
- Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Husnia Marrif
- Toxicology Research Division, Bureau of Chemical Safety, Health Canada, Ottawa, Ontario, Canada
| | | | - Amel O. Bakheit
- College of Veterinary Medicine and Animal Production, SUST, Sudan
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
27
|
Hepato-protective effect of curcumin and silymarin against Eimeria stiedae in experimentally infected rabbits. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Cervantes-Valencia ME, Hermosilla C, Alcalá-Canto Y, Tapia G, Taubert A, Silva LMR. Antiparasitic Efficacy of Curcumin Against Besnoitia besnoiti Tachyzoites in vitro. Front Vet Sci 2019; 5:333. [PMID: 30687723 PMCID: PMC6336690 DOI: 10.3389/fvets.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023] Open
Abstract
Besnoitia besnoiti is the causative agent of bovine besnoitiosis. B. besnoiti infections lead to reduced fertility and productivity in cattle causing high economic losses, not only in Europe, but also in Asia and Africa. Mild to severe clinical signs, such as anasarca, oedema, orchitis, hyperkeratosis, and characteristic skin and mucosal cysts, are due to B. besnoiti tachyzoite and bradyzoite replication in intermediate host tissues. So far, there are no commercially available effective drugs against this parasite. Curcumin, a polyphenolic compound from Curcuma longa rhizome is well-known for its antioxidant, anti-inflammatory, immunomodulatory and also anti-protozoan effects. Hence, the objective of this study was to evaluate the effects of curcumin on viability, motility, invasive capacity, and proliferation of B. besnoiti tachyzoites replicating in primary bovine umbilical vein endothelial cells (BUVEC) in vitro. Functional inhibition assays revealed that curcumin treatments reduce tachyzoite viability and induce lethal effects in up to 57% of tachyzoites (IC50 in 5.93 μM). Referring to general motility, significant dose-dependent effects of curcumin treatments were observed. Interestingly, curcumin treatments only dampened helical gliding and twirling activities whilst longitudinal gliding motility was not significantly affected. In addition, curcumin pretreatments of tachyzoites resulted in a dose-dependent reduction of host cell invasion as detected by infections rates at 1 day p. i. These findings demonstrate feeding cattle with Curcuma longa rhizomes may represent a new strategy for besnoitiosis treatment.
Collapse
Affiliation(s)
- María Eugenia Cervantes-Valencia
- Graduate Program of Animal Health and Production, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Yazmín Alcalá-Canto
- Department of Parasitology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Graciela Tapia
- Department of Genetics and Biostatistics, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Liliana M. R. Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
29
|
Asadpour M, Namazi F, Razavi SM, Nazifi S. Curcumin: A promising treatment for Cryptosporidium parvum infection in immunosuppressed BALB/c mice. Exp Parasitol 2018; 195:59-65. [DOI: 10.1016/j.exppara.2018.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/18/2018] [Accepted: 10/28/2018] [Indexed: 12/28/2022]
|
30
|
Azami SJ, Teimouri A, Keshavarz H, Amani A, Esmaeili F, Hasanpour H, Elikaee S, Salehiniya H, Shojaee S. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice. Int J Nanomedicine 2018; 13:7363-7374. [PMID: 30519020 PMCID: PMC6233476 DOI: 10.2147/ijn.s181896] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to prepare curcumin nanoemulsion (CR-NE) to solve the problems associated with poor water solubility and low bioavailability of CR and to test its efficiency in the treatment of acute and chronic toxoplasmosis in mouse models. Materials and methods CR-NE 1% was prepared using spontaneous emulsification by soybean as oil phase; a mixture of Tween 80 and Tween 85 as surfactant; ethanol as cosurfactant and distilled water. Particle size and zeta potential of NE were assessed using Nano-ZS90 dynamic light scattering. Stability testing of NE was assessed after storage for 2 months at room temperature. In vivo experiments were carried out using 50 BALB/c mice inoculated with virulent RH strain (type I) and 50 BALB/c mice inoculated with avirulent Tehran strain (type II) of Toxoplasma gondii and treated with CR-NE (1% w/v), CR suspension (CR-S, 1% w/v), and NE without CR (NE-no CR). Results The mean particle size and zeta potential of CR-NE included 215.66±16.8 nm and −29.46±2.65 mV, respectively, and were stable in particle size after a three freeze–thaw cycle. In acute phase experiment, the survival time of mice infected with RH strain of T. gondii and treated with CR-NE extended from 8 to 10 days postinoculation. The differences were statistically significant between the survival time of mice in CR-NE-treated group compared with negative control group (P<0.001). Furthermore, CR-NE significantly decreased the mean counts of peritoneum tachyzoites from 5,962.5±666 in negative control group to 627.5±73 in CR-NE-treated mice (P<0.001). Growth inhibition rates of tachyzoites in peritoneum of mice receiving CR-NE, CR-S, and NE-no CR included 90%, 21%, and 11%, respectively, compared with negative control group. In chronic phase experiment, the average number and size of tissue cysts significantly decreased to 17.2±15.6 and 31.5±6.26 µm, respectively, in mice inoculated with bradyzoites of T. gondii Tehran strain and treated with CR-NE compared with that in negative control group (P<0.001). Decrease of cyst numbers was verified by downregulation of BAG1 in treatment groups compared with negative control group with a minimum relative expression in CR-NE (1.12±0.28), CR-S (11.76±0.87), and NE-no CR (14.67±0.77), respectively, (P<0.001). Conclusion Results from the current study showed the potential of CR-S and CR-NE in treatment of acute and chronic toxoplasmosis in mouse models for the first time. However, CR-NE was more efficient than CR-S, and it seems that CR-NE has a potential formula for the treatment of acute and chronic toxoplasmosis, especially in those with latent bradyzoites in brain.
Collapse
Affiliation(s)
- Sanaz Jafarpour Azami
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Aref Teimouri
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, .,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keshavarz
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Hasanpour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran, .,Department of Medical Parasitology and Mycology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Samira Elikaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | - Hamid Salehiniya
- Department of Public Health, School of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Saeedeh Shojaee
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
31
|
Lechuga GC, Pereira MCS, Bourguignon SC. Heme metabolism as a therapeutic target against protozoan parasites. J Drug Target 2018; 27:767-779. [DOI: 10.1080/1061186x.2018.1536982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Guilherme Curty Lechuga
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mirian C. S. Pereira
- Fundação Oswaldo Cruz, Laboratório de Ultraestrutura Celular, Rio de Janeiro, Brazil
| | - Saulo C. Bourguignon
- Laboratório de Interação celular e molecular, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Rua Outeiro São João Batista, Rio de Janeiro, Brazil
- Instituto de Biologia, Programa de Pós-graduação em Ciências e Biotecnologia (PPBI), Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Khan S, Imran M, Butt TT, Ali Shah SW, Sohail M, Malik A, Das S, Thu HE, Adam A, Hussain Z. Curcumin based nanomedicines as efficient nanoplatform for treatment of cancer: New developments in reversing cancer drug resistance, rapid internalization, and improved anticancer efficacy. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Basmaciyan L, Berry L, Gros J, Azas N, Casanova M. Temporal analysis of the autophagic and apoptotic phenotypes in Leishmania parasites. MICROBIAL CELL 2018; 5:404-417. [PMID: 30280103 PMCID: PMC6167523 DOI: 10.15698/mic2018.09.646] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The leishmaniases are worldwide neglected tropical diseases caused by parasitic protozoa of the Leishmania genus. Different stimuli induce Leishmania cell death, but the proteins involved remain poorly understood. Furthermore, confusion often appears between cell death and the cell survival process autophagy, whose phenotype is not clearly defined. In this article, we present a comprehensive and temporal analysis of the cellular events occurring during miltefosine-induced cell death and autophagy in L. major. We also provide a list of features in order to clearly identify apoptotic cells, autophagic cells and to distinguish both processes. Furthermore, we demonstrate that autophagy is followed by apoptosis in the absence of nutrients. Finally, we show that cells treated with the generic kinase inhibitor staurosporine express apoptotic as well as autophagic markers and therefore cannot be used as an apoptosis inducer in Leishmania. These descriptions lead to a better recognition and understanding of apoptosis and autophagy, enabling their targeting in the development of new anti-leishmanial drugs. These researches also make it possible to better understand these processes in general, through the study of an ancestral eukaryote.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Laurence Berry
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, University of Montpellier, France
| | - Julie Gros
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
34
|
Dai C, Li D, Gong L, Xiao X, Tang S. Curcumin Ameliorates Furazolidone-Induced DNA Damage and Apoptosis in Human Hepatocyte L02 Cells by Inhibiting ROS Production and Mitochondrial Pathway. Molecules 2016; 21:E1061. [PMID: 27556439 PMCID: PMC6272881 DOI: 10.3390/molecules21081061] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
Furazolidone (FZD), a synthetic nitrofuran derivative, has been widely used as an antibacterial and antiprotozoal agent. Recently, the potential toxicity of FZD has raised concerns, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on FZD-induced cytotoxicity and the underlying mechanism in human hepatocyte L02 cells. The results showed that curcumin pre-treatment significantly ameliorated FZD-induced oxidative stress, characterized by decreased reactive oxygen species (ROS) and malondialdehyde formation, and increased superoxide dismutase, catalase activities and glutathione contents. In addition, curcumin pre-treatment significantly ameliorated the loss of mitochondrial membrane potential, the activations of caspase-9 and -3, and apoptosis caused by FZD. Alkaline comet assay showed that curcumin markedly reduced FZD-induced DNA damage in a dose-dependent manner. Curcumin pre-treatment consistently and markedly down-regulated the mRNA expression levels of p53, Bax, caspase-9 and -3 and up-regulated the mRNA expression level of Bcl-2. Taken together, these results reveal that curcumin protects against FZD-induced DNA damage and apoptosis by inhibiting oxidative stress and mitochondrial pathway. Our study indicated that curcumin may be a promising combiner with FZD to reduce FZD-related toxicity in clinical applications.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Daowen Li
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Lijing Gong
- Sport Science Research Center, Beijing Sport University, 48 Xinxi Road, Haidian District, Beijing 100084, China.
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
35
|
Cervantes-Valencia ME, Alcala-Canto Y, Salem AZ, Kholif AE, Ducoing-Watty AM, Bernad-Bernad MJ, Gutiérrez-Olvera C. Influence of Curcumin (Curcuma Longa) as a Natural Anticoccidial Alternative in Adult Rabbits: First Results. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- María Eugenia Cervantes-Valencia
- Programa de Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yazmin Alcala-Canto
- Departamento de Parasitología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abdelfattah Z.M. Salem
- Facultad de Medicina Veterinariay Zootecnia, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Ahmed E. Kholif
- Dairy Science Department, National Research Centre, Giza, Egypt
| | | | | | - Carlos Gutiérrez-Olvera
- Departamento de Nutrición Animaly Bioquímica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
36
|
Glaser J, Holzgrabe U. Focus on PAINS: false friends in the quest for selective anti-protozoal lead structures from Nature? MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00481k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pan-assay interference compounds (PAINS) are molecules showing promising but deceptive activities in various biochemical screenings mainly due to unselective interactions with the target.
Collapse
Affiliation(s)
- J. Glaser
- Institute of Pharmacy and Food Chemistry
- University of Wuerzburg
- 97074 Wuerzburg
- Germany
| | - U. Holzgrabe
- Institute of Pharmacy and Food Chemistry
- University of Wuerzburg
- 97074 Wuerzburg
- Germany
| |
Collapse
|
37
|
Implication of different domains of the Leishmania major metacaspase in cell death and autophagy. Cell Death Dis 2015; 6:e1933. [PMID: 26492367 PMCID: PMC4632311 DOI: 10.1038/cddis.2015.288] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023]
Abstract
Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine–cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.
Collapse
|
38
|
Alkhaldi AAM, Creek DJ, Ibrahim H, Kim DH, Quashie NB, Burgess KE, Changtam C, Barrett MP, Suksamrarn A, de Koning HP. Potent trypanocidal curcumin analogs bearing a monoenone linker motif act on trypanosoma brucei by forming an adduct with trypanothione. Mol Pharmacol 2014; 87:451-64. [PMID: 25527638 DOI: 10.1124/mol.114.096016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously reported that curcumin analogs with a C7 linker bearing a C4-C5 olefinic linker with a single keto group at C3 (enone linker) display midnanomolar activity against the bloodstream form of Trypanosoma brucei. However, no clear indication of their mechanism of action or superior antiparasitic activity relative to analogs with the original di-ketone curcumin linker was apparent. To further investigate their utility as antiparasitic agents, we compare the cellular effects of curcumin and the enone linker lead compound 1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-one (AS-HK014) here. An AS-HK014-resitant line, trypanosomes adapted to AS-HK014 (TA014), was developed by in vitro exposure to the drug. Metabolomic analysis revealed that exposure to AS-HK014, but not curcumin, rapidly depleted glutathione and trypanothione in the wild-type line, although almost all other metabolites were unchanged relative to control. In TA014 cells, thiol levels were similar to untreated wild-type cells and not significantly depleted by AS-HK014. Adducts of AS-HK014 with both glutathione and trypanothione were identified in AS-HK014-exposed wild-type cells and reproduced by chemical reaction. However, adduct accumulation in sensitive cells was much lower than in resistant cells. TA014 cells did not exhibit any changes in sequence or protein levels of glutathione synthetase and γ-glutamylcysteine synthetase relative to wild-type cells. We conclude that monoenone curcuminoids have a different mode of action than curcumin, rapidly and specifically depleting thiol levels in trypanosomes by forming an adduct. This adduct may ultimately be responsible for the highly potent trypanocidal and antiparasitic activity of the monoenone curcuminoids.
Collapse
Affiliation(s)
- Abdulsalam A M Alkhaldi
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Darren J Creek
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Hasan Ibrahim
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Dong-Hyun Kim
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Neils B Quashie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Karl E Burgess
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Chatchawan Changtam
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Apichart Suksamrarn
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom (A.A.M.A, D.J.C., H.I., D.-H.K., N.B.Q., K.E.B., M.P.B., H.P.K.); Department of Biology, College of Science, Aljouf University, Skaka, Kingdom of Saudi Arabia (A.A.M.A); Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia (D.J.C.); Faculty of Science, Department of Zoology, Sebha University, Libya (H.I.); Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom (D.-H.K.); Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, Accra, Ghana (N.B.Q.); Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, Thailand (C.C.); Wellcome Trust Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom (M.P.B.); and Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand (A.S.)
| |
Collapse
|
39
|
Cheikh-Ali Z, Caron J, Cojean S, Bories C, Couvreur P, Loiseau PM, Desmaële D, Poupon E, Champy P. "Squalenoylcurcumin" nanoassemblies as water-dispersible drug candidates with antileishmanial activity. ChemMedChem 2014; 10:411-8. [PMID: 25523035 DOI: 10.1002/cmdc.201402449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Indexed: 12/21/2022]
Abstract
Curcumin, a natural polyphenolic compound, showed antiparasitic potential, including trypanocidal and leishmanicidal activity, in several in vitro and in vivo models. The molecule is well tolerated in humans. However, it is insoluble in water and displays poor oral bioavailability as a result of low absorption. New derivatives of curcumin were prepared by esterification of one or two of its phenolic groups with 1,1',2-tris-norsqualenic acid. These "squalenoylcurcumins" were formulated as water-dispersible nanoassemblies of homogeneous size, and they proved to be stable. Squalenoylcurcumins were inactive against Trypanosoma brucei brucei trypomastigotes, even as nanoassemblies, in contrast with curcumin. However, against Leishmania donovani promastigotes, the activities of the squalenoylcurcumins and their nanoassemblies were enhanced relative to that of curcumin. In L. donovani axenic and intramacrophagic amastigotes, they showed activity in the range of miltefosine, with good selectivity indexes. In regard to their dispersibility in water and to the safety of curcumin, these nanoassemblies are promising candidates for preclinical study toward the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Zakaria Cheikh-Ali
- Laboratoire de Pharmacognosie, CNRS UMR 8076 BioCIS, LabEX LERMIT, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry (France)
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev 2014; 114:10369-428. [PMID: 25253511 DOI: 10.1021/cr400552x] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hidayat Hussain
- UoN Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa , P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | | | | | | | | |
Collapse
|
41
|
In vitro efficacy of curcumin on Trichomonas vaginalis. Wien Klin Wochenschr 2014; 126 Suppl 1:S32-6. [DOI: 10.1007/s00508-014-0522-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/04/2014] [Indexed: 11/26/2022]
|
42
|
Munigunti R, Gathiaka S, Acevedo O, Sahu R, Tekwani B, Calderón AI. Determination of antiplasmodial activity and binding affinity of curcumin and demethoxycurcumin towardsPfTrxR. Nat Prod Res 2014; 28:359-64. [DOI: 10.1080/14786419.2013.866112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
43
|
Kim DK, Lillehoj HS, Lee SH, Jang SI, Lillehoj EP, Bravo D. Dietary Curcuma longa enhances resistance against Eimeria maxima and Eimeria tenella infections in chickens. Poult Sci 2013; 92:2635-43. [PMID: 24046410 DOI: 10.3382/ps.2013-03095] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The effects of dietary supplementation with an organic extract of Curcuma longa on systemic and local immune responses to experimental Eimeria maxima and Eimeria tenella infections were evaluated in commercial broiler chickens. Dietary supplementation with C. longa enhanced coccidiosis resistance as demonstrated by increased BW gains, reduced fecal oocyst shedding, and decreased gut lesions compared with infected birds fed a nonsupplemented control diet. The chickens fed C. longa-supplemented diet showed enhanced systemic humoral immunity, as assessed by greater levels of serum antibodies to an Eimeria microneme protein, MIC2, and enhanced cellular immunity, as measured by concanavalin A-induced spleen cell proliferation, compared with controls. At the intestinal level, genome-wide gene expression profiling by microarray hybridization identified 601 differentially expressed transcripts (287 upregulated, 314 downregulated) in gut lymphocytes of C. longa-fed chickens compared with nonsupplemented controls. Based on the known functions of the corresponding mammalian genes, the C. longa-induced intestinal transcriptome was mostly associated with genes mediating anti-inflammatory effects. Taken together, these results suggest that dietary C. longa could be used to attenuate Eimeria-induced, inflammation-mediated gut damage in commercial poultry production.
Collapse
Affiliation(s)
- Duk Kyung Kim
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, USDA, Beltsville, MD 20705
| | | | | | | | | | | |
Collapse
|
44
|
Synthesis and biological evaluation of a novel series of aryl S,N-ketene acetals as antileishmanial agents. Bioorg Med Chem Lett 2013; 23:3979-82. [DOI: 10.1016/j.bmcl.2013.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 11/24/2022]
|
45
|
Yu Q, Huang JF. The DEER database: A bridge connecting drugs, environmental effects, and regulations. Gene 2013; 520:98-105. [DOI: 10.1016/j.gene.2013.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/23/2013] [Accepted: 03/01/2013] [Indexed: 12/30/2022]
|
46
|
Goswami TK, Gadadhar S, Gole B, Karande AA, Chakravarty AR. Photocytotoxicity of copper(II) complexes of curcumin and N-ferrocenylmethyl-L-amino acids. Eur J Med Chem 2013; 63:800-10. [PMID: 23584543 DOI: 10.1016/j.ejmech.2013.03.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/09/2013] [Accepted: 03/13/2013] [Indexed: 02/03/2023]
Abstract
Copper(II) complexes [Cu(Fc-aa)(cur)] (1-3) of curcumin (Hcur) and N-ferrocenylmethyl-L-amino acids (Fc-aa), viz., ferrocenylmethyl-L-tyrosine (Fc-TyrH), ferrocenylmethyl-L-tryptophan (Fc-TrpH) and ferrocenylmethyl-L-methionine (Fc-MetH), were prepared and characterized. The DNA photocleavage activity, photocytotoxicity and cellular localization in HeLa and MCF-7 cancer cells of these complexes were studied. Acetylacetonate (acac) complexes [Cu(Fc-aa)(acac)] (4-6) were prepared and used as controls. The chemical nuclease inactive complexes showed efficient pUC19 DNA cleavage activity in visible light. Complexes 1-3 showed high photocytotoxicity with low dark toxicity thus giving remarkable photodynamic effect. FACScan analysis showed apoptosis of the cancer cells. Fluorescence microscopic studies revealed primarily cytosolic localization of the complexes.
Collapse
Affiliation(s)
- Tridib K Goswami
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore 560 012, India
| | | | | | | | | |
Collapse
|
47
|
Tiwari A, Kumar S, Suryawanshi S, Mittal M, Vishwakarma P, Gupta S. Chemotherapy of leishmaniasis part X: Synthesis and bioevaluation of novel terpenyl heterocycles. Bioorg Med Chem Lett 2013. [DOI: 10.1016/j.bmcl.2012.10.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Morais ER, Oliveira KC, Magalhães LG, Moreira EBC, Verjovski-Almeida S, Rodrigues V. Effects of curcumin on the parasite Schistosoma mansoni: a transcriptomic approach. Mol Biochem Parasitol 2012; 187:91-7. [PMID: 23276630 DOI: 10.1016/j.molbiopara.2012.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Schistosomiasis remains a severe problem of public health in developing countries. Several reports show that praziquantel, the drug of choice for treating schistosomiasis, can select Schistosoma mansoni strains resistant to the drug. Thus, developing new drugs against this parasitosis is a highly desirable goal. Curcumin, a phenolic compound deriving from the plant Curcuma longa, has been shown to have anticancer, anti-inflammatory and antiparasitic effects. Recently, our group has demonstrated that curcumin causes the separation of S. mansoni adult worm pairs, eggs infertility, decreased oviposition and parasite viability, leading to death. In the present work, we have investigated the effects of curcumin on S. mansoni gene expression in adult worms through microarray analyses. Our results showed 2374 genes that were significantly and differentially expressed, of which 981 were up-regulated and 1393 were down-regulated. Among the differentially expressed genes there were components of important signaling pathways involved in embryogenesis and oogenesis such as Notch and TGF-β. Gene networks most significantly enriched with altered genes were identified, including a network related to Cellular Function and Maintenance, Molecular Transport, Organ Development, which is connected to the TGF-β signaling pathway and might be related to the effect of curcumin on pairing of adult worm pairs, egg production and viability of worms. qPCR validation experiments with 7 genes have confirmed the expression changes detected with arrays. Here we suggest that transcriptional repression observed in Notch and TGF-β pathways could explain the effects on oviposition and egg development described in the literature.
Collapse
Affiliation(s)
- Enyara R Morais
- Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, 14040-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Chen YQ, Xu QM, Li XR, Yang SL, Zhu-Ge HX. In vitro evaluation of schistosomicidal potential of curcumin against Schistosoma japonicum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2012; 14:1064-1072. [PMID: 23088385 DOI: 10.1080/10286020.2012.708657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Curcumin is a polyphenol derived from the dietary spice turmeric. The aim of this study was to investigate the in vitro effect of curcumin against eggs, cercariae, pre-adults, and adults of Schistosoma japonicum compared to praziquantel. After incubated by different concentration of curcumin or praziquantel in different time, the percent hatching rates of eggs, the percent dead rates of cercariae, and the number of dead worms were observed. Curcumin showed time- and dose-dependent schistosomicidal effects on every life stages of S. japonicum. In addition, curcumin exhibited an optimal activity against the adult stage with no differential sensitivity between male and female worms and decreased motor activity of these worms without tegumental alterations. The promising in vitro effects on all stages of S. japonicum warrants further evaluation for the prophylactic and therapeutic values in the early and late schistosomiasis in field trials.
Collapse
Affiliation(s)
- Yan-Qin Chen
- Department of Parasitology, Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | |
Collapse
|
50
|
Lysine acetylation: elucidating the components of an emerging global signaling pathway in trypanosomes. J Biomed Biotechnol 2012; 2012:452934. [PMID: 23093844 PMCID: PMC3470893 DOI: 10.1155/2012/452934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 12/31/2022] Open
Abstract
In the past ten years the number of acetylated proteins reported in literature grew exponentially. Several authors have proposed that acetylation might be a key component in most eukaryotic signaling pathways, as important as phosphorylation. The enzymes involved in this process are starting to emerge; acetyltransferases and deacetylases are found inside and outside the nuclear compartment and have different regulatory functions. In trypanosomatids several of these enzymes have been described and are postulated to be novel antiparasitic targets for the rational design of drugs. In this paper we overview the most important known acetylated proteins and the advances made in the identification of new acetylated proteins using high-resolution mass spectrometry. Also, we summarize what is known so far about the acetyltransferases and deacetylases in eukaryotes, focusing on trypanosomes and their potential use as chemotherapeutic targets.
Collapse
|