1
|
Liu D, Ouyang Y, Chen R, Wang M, Ai C, El-Seedi HR, Sarker MMR, Chen X, Zhao C. Nutraceutical potentials of algal ulvan for healthy aging. Int J Biol Macromol 2022; 194:422-434. [PMID: 34826453 DOI: 10.1016/j.ijbiomac.2021.11.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023]
Abstract
Several theories for aging are constantly put forth to explain the underlying mechanisms. Oxidative stress, DNA dysfunction, inflammation, and mitochondrial dysfunction, along with the release of cytochrome c are some of these theories. Diseases such as type 2 diabetes mellitus, intestinal dysfunction, cardiovascular diseases, hepatic injury, and even cancer develop with age and eventually cause death. Ulva polysaccharides, owing to their special structures and various functions, have emerged as desirable materials for keeping healthy. These polysaccharide structures are found to be closely related to the extraction methods, seaweed strains, and culture conditions. Ulvan is a promising bioactive substance, a potential functional food, which can regulate immune cells to augment inflammation, control the activity of aging-related genes, promote tumor senescence, enhance mitochondrial function, maintain liver balance, and protect the gut microbiome from inflammatory attacks. Given the desirable physiochemical and gelling properties of ulvan, it would serve to improve the quality and shelf-life of food.
Collapse
Affiliation(s)
- Dan Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuezhen Ouyang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruoxin Chen
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfu Wang
- Food and Nutrition Department, Providence University, Taichung 43301, Taiwan
| | - Chao Ai
- Department of Food Science & Technology, National University of Singapore, Singapore 117543, Singapore
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosynthesis, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Doser RL, Amberg GC, Hoerndli FJ. Reactive Oxygen Species Modulate Activity-Dependent AMPA Receptor Transport in C. elegans. J Neurosci 2020; 40:7405-7420. [PMID: 32847966 PMCID: PMC7511182 DOI: 10.1523/jneurosci.0902-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
The AMPA subtype of synaptic glutamate receptors (AMPARs) plays an essential role in cognition. Their function, numbers, and change at synapses during synaptic plasticity are tightly regulated by neuronal activity. Although we know that long-distance transport of AMPARs is essential for this regulation, we do not understand the associated regulatory mechanisms of it. Neuronal transmission is a metabolically demanding process in which ATP consumption and production are tightly coupled and regulated. Aerobic ATP synthesis unavoidably produces reactive oxygen species (ROS), such as hydrogen peroxide, which are known modulators of calcium signaling. Although a role for calcium signaling in AMPAR transport has been described, there is little understanding of the mechanisms involved and no known link to physiological ROS signaling. Here, using real-time in vivo imaging of AMPAR transport in the intact C. elegans nervous system, we demonstrate that long-distance synaptic AMPAR transport is bidirectionally regulated by calcium influx and activation of calcium/calmodulin-dependent protein kinase II. Quantification of in vivo calcium dynamics revealed that modest, physiological increases in ROS decrease calcium transients in C. elegans glutamatergic neurons. By combining genetic and pharmacological manipulation of ROS levels and calcium influx, we reveal a mechanism in which physiological increases in ROS cause a decrease in synaptic AMPAR transport and delivery by modulating activity-dependent calcium signaling. Together, our results identify a novel role for oxidant signaling in the regulation of synaptic AMPAR transport and delivery, which in turn could be critical for coupling the metabolic demands of neuronal activity with excitatory neurotransmission.SIGNIFICANCE STATEMENT Synaptic AMPARs are critical for excitatory synaptic transmission. The disruption of their synaptic localization and numbers is associated with numerous psychiatric, neurologic, and neurodegenerative conditions. However, very little is known about the regulatory mechanisms controlling transport and delivery of AMPAR to synapses. Here, we describe a novel physiological signaling mechanism in which ROS, such as hydrogen peroxide, modulate AMPAR transport by modifying activity-dependent calcium signaling. Our findings provide the first evidence in support of a mechanistic link between physiological ROS signaling, AMPAR transport, localization, and excitatory transmission. This is of fundamental and clinical significance since dysregulation of intracellular calcium and ROS signaling is implicated in aging and the pathogenesis of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Gregory C Amberg
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
3
|
Jang IS, Nakamura M, Kubota H, Noda M, Akaike N. Extracellular pH modulation of excitatory synaptic transmission in hippocampal CA3 neurons. J Neurophysiol 2020; 123:2426-2436. [PMID: 32401126 DOI: 10.1152/jn.00013.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, the effect of extracellular pH on glutamatergic synaptic transmission was examined in mechanically dissociated rat hippocampal CA3 pyramidal neurons using a whole-cell patch-clamp technique under voltage-clamp conditions. Native synaptic boutons were isolated without using any enzymes, using a so-called "synapse bouton preparation," and preserved for the electrical stimulation of single boutons. Both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) were found to decrease and increase in response to modest acidic (~pH 6.5) and basic (~pH 8.5) solutions, respectively. These changes in sEPSC frequency were not affected by the addition of TTX but completely disappeared by successive addition of Cd2+. However, changes in sEPSC amplitude induced by acidic and basic extracellular solutions were not affected by the addition of neither TTX nor Cd2+. The glutamate-induced whole-cell currents were decreased and increased by acidic and basic solutions, respectively. Acidic pH also decreased the amplitude and increased the failure rate (Rf) and paired-pulse rate (PPR) of glutamatergic electrically evoked excitatory postsynaptic currents (eEPSCs), while a basic pH increased the amplitude and decreased both the Rf and PPR of eEPSCs. The kinetics of the currents were not affected by changes in pH. Acidic and basic solutions decreased and increased voltage-gated Ca2+ but not Na+ channel currents in the dentate gyrus granule cell bodies. Our results indicate that extracellular pH modulates excitatory transmission via both pre- and postsynaptic sites, with the presynaptic modulation correlated to changes in voltage-gated Ca2+ channel currents.NEW & NOTEWORTHY The effects of external pH changes on spontaneous, miniature, and evoked excitatory synaptic transmission in CA3 hippocampal synapses were examined using the isolated nerve bouton preparation, which allowed for the accurate regulation of extracellular pH at the synapses. Acidification generally reduced transmission, partly via effects on presynaptic Ca2+ channel currents, while alkalization generally enhanced transmission. Both pre- and postsynaptic sites contributed to these effects.
Collapse
Affiliation(s)
- Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hisahiko Kubota
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, Kumamoto, Japan.,Research Division of Neurophysiology, Kitamoto Hospital, Saitama, Japan
| |
Collapse
|
4
|
Kumar A. Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:985-1012. [PMID: 31646542 DOI: 10.1007/978-3-030-12457-1_39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Oxidative stress increases in the brain with aging and neurodegenerative diseases. Previous work emphasized irreversible oxidative damage in relation to cognitive impairment. This research has evolved to consider a continuum of alterations, from redox signaling to oxidative damage, which provides a basis for understanding the onset and progression of cognitive impairment. This review provides an update on research linking redox signaling to altered function of neural circuits involved in information processing and memory. Recent Advances: Starting in middle age, redox signaling triggers changes in nervous system physiology described as senescent physiology. Hippocampal senescent physiology involves decreased cell excitability, altered synaptic plasticity, and decreased synaptic transmission. Recent studies indicate N-methyl-d-aspartate and ryanodine receptors and Ca2+ signaling molecules as molecular substrates of redox-mediated senescent physiology. CRITICAL ISSUES We review redox homeostasis mechanisms and consider the chemical character of reactive oxygen and nitrogen species and their role in regulating different transmitter systems. In this regard, senescent physiology may represent the co-opting of pathways normally responsible for feedback regulation of synaptic transmission. Furthermore, differences across transmitter systems may underlie differential vulnerability of brain regions and neuronal circuits to aging and disease. FUTURE DIRECTIONS It will be important to identify the intrinsic mechanisms for the shift in oxidative/reductive processes. Intrinsic mechanism will depend on the transmitter system, oxidative stressors, and expression/activity of antioxidant enzymes. In addition, it will be important to identify how intrinsic processes interact with other aging factors, including changes in inflammatory or hormonal signals. Antioxid. Redox Signal. 28, 1724-1745.
Collapse
Affiliation(s)
- Ashok Kumar
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Brittney Yegla
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Thomas C Foster
- 1 Department of Neuroscience, McKnight Brain Institute, University of Florida , Gainesville, Florida.,2 Genetics and Genomics Program, Genetics Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
6
|
Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 2010; 44:1098-124. [PMID: 20836659 DOI: 10.3109/10715762.2010.498477] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress and resulting lipid peroxidation is involved in various and numerous pathological states including inflammation, atherosclerosis, neurodegenerative diseases and cancer. This review is focused on recent advances concerning the formation, metabolism and reactivity towards macromolecules of lipid peroxidation breakdown products, some of which being considered as 'second messengers' of oxidative stress. This review relates also new advances regarding apoptosis induction, survival/proliferation processes and autophagy regulated by 4-hydroxynonenal, a major product of omega-6 fatty acid peroxidation, in relationship with detoxication mechanisms. The use of these lipid peroxidation products as oxidative stress/lipid peroxidation biomarkers is also addressed.
Collapse
Affiliation(s)
- F Guéraud
- UMR1089 Xénobiotiques, INRA, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 2009; 34:639-59. [PMID: 19199030 DOI: 10.1007/s11064-009-9922-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2008] [Indexed: 12/16/2022]
Abstract
The SAM strains, a group of related inbred strains consisting of senescence-prone inbred strains (SAMP) and senescence-resistant inbred strains (SAMR), have been successfully developed by selective inbreeding of the AKR/J strain of mice donated by the Jackson laboratory in 1968. The characteristic feature of aging common to the SAMP and SAMR is accelerated senescence and normal aging, respectively. Furthermore, SAMP and SAMR strains of mice manifest various pathobiological phenotypes spontaneously. Among SAMP strains, SAMP8 and SAMP10 mice show age-related behavioral deterioration such as deficits in learning and memory, emotional disorders (reduced anxiety-like behavior and depressive behavior) and altered circadian rhythm associated with certain pathological, biochemical and pharmacological changes. Here, the previous and recent literature on SAM mice are reviewed with an emphasis on SAMP8 and SAMP10 mice. A spontaneous model like SAM with distinct advantages over the gene-modified model is hoped by investigators to be used more widely as a biogerontological resource to explore the etiopathogenesis of accelerated senescence and neurodegenerative disorders.
Collapse
Affiliation(s)
- Toshio Takeda
- The Council for SAM Research, 24 Nishi-ohtake-cho Mibu, Nakagyo-ku, Kyoto, 604-8856, Japan.
| |
Collapse
|
8
|
Zimniak P. Detoxification reactions: relevance to aging. Ageing Res Rev 2008; 7:281-300. [PMID: 18547875 DOI: 10.1016/j.arr.2008.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 12/23/2022]
Abstract
It is widely (although not universally) accepted that organismal aging is the result of two opposing forces: (i) processes that destabilize the organism and increase the probability of death, and (ii) longevity assurance mechanisms that prevent, repair, or contain damage. Processes of the first group are often chemical and physico-chemical in nature, and are either inevitable or only under marginal biological control. In contrast, protective mechanisms are genetically determined and are subject to natural selection. Life span is therefore largely dependent on the investment into protective mechanisms which evolve to optimize reproductive fitness. Recent data indicate that toxicants, both environmental and generated endogenously by metabolism, are major contributors to macromolecular damage and physiological dysregulation that contribute to aging; electrophilic carbonyl compounds derived from lipid peroxidation appear to be particularly important. As a consequence, detoxification mechanisms, including the removal of electrophiles by glutathione transferase-catalyzed conjugation, are major longevity assurance mechanisms. The expression of multiple detoxification enzymes, each with a significant but relatively modest effect on longevity, is coordinately regulated by signaling pathways such as insulin/insulin-like signaling, explaining the large effect of such pathways on life span. The major aging-related toxicants and their cognate detoxification systems are discussed in this review.
Collapse
Affiliation(s)
- Piotr Zimniak
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, United States.
| |
Collapse
|
9
|
Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 2008; 477:183-95. [PMID: 18602883 PMCID: PMC2590784 DOI: 10.1016/j.abb.2008.06.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/11/2008] [Accepted: 06/14/2008] [Indexed: 02/07/2023]
Abstract
During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H(2)O(2) and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved.
Collapse
Affiliation(s)
- Henry Jay Forman
- School of Natural Sciences, University of California, Merced, 4225 N. Hospital Road, Building 1200, Merced, CA 95344, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudhary P, Awasthi S. Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death. Free Radic Biol Med 2008; 45:111-8. [PMID: 18456001 PMCID: PMC2664084 DOI: 10.1016/j.freeradbiomed.2008.04.007] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/02/2008] [Accepted: 04/06/2008] [Indexed: 11/26/2022]
Abstract
Within the last two decades, 4-hydroxynonenal has emerged as an important second messenger involved in the regulation of various cellular processes. Our recent studies suggest that HNE can induce apoptosis in various cells through the death receptor Fas (CD95)-mediated extrinsic pathway as well as through the p53-dependent intrinsic pathway. Interestingly, through its interaction with the nuclear protein Daxx, HNE can self-limit its apoptotic role by translocating Daxx to cytoplasm where it binds to Fas and inhibits Fas-mediated apoptosis. In this paper, after briefly describing recent studies on various biological activities of HNE, based on its interactions with Fas, Daxx, and p53, we speculate on possible mechanisms through which HNE may affect a multitude of cellular processes and draw a parallel between signaling roles of H(2)O(2) and HNE.
Collapse
Affiliation(s)
- Yogesh C Awasthi
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Sharov VS, Schöneich C. Chapter 6 Oxidative Modification of Ca2+ Channels, Ryanodine Receptors, and the Sarco/Endoplasmic Reticulum Ca2+-ATPase. CURRENT TOPICS IN MEMBRANES 2008. [DOI: 10.1016/s1063-5823(08)00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Poli G, Schaur R, Siems W, Leonarduzzi G. 4-Hydroxynonenal: A membrane lipid oxidation product of medicinal interest. Med Res Rev 2008; 28:569-631. [DOI: 10.1002/med.20117] [Citation(s) in RCA: 509] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Tomobe K, Okuma Y, Nomura Y. Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Brain Res 2007; 1141:214-7. [PMID: 17303091 DOI: 10.1016/j.brainres.2006.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 08/05/2006] [Accepted: 08/08/2006] [Indexed: 10/23/2022]
Abstract
Senescence-accelerated mouse P8 (SAMP8) mice show deficits of learning and memory at an early age. However, no evidence of neurochemical changes was found in the hippocampus of SAMP8 at an early age. After electric shock in the passive avoidance test, SAMR1 (normal aging mice) showed biphasic responses in the phosphorylated CREB (p-CREB) level in the hippocampal CA1 region: an early peak detected at 1 to 3 h was followed by a marked drop at 6 h, and a second peak rise starting after 9 to 12 h after electric stimulation. On the other hand, SAMP8 manifested one peak in the p-CREB level 9 h after the stimulation. Since the phosphorylation of CREB plays an important role for synaptic plasticity and consolidation of long-term memory, the impairment of CREB phosphorylation in the hippocampal CA1 region of SAMP8 may cause learning and memory deficits.
Collapse
Affiliation(s)
- Koji Tomobe
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
14
|
Arakawa M, Ito Y. N-acetylcysteine and neurodegenerative diseases: basic and clinical pharmacology. CEREBELLUM (LONDON, ENGLAND) 2007; 6:308-14. [PMID: 17853088 PMCID: PMC7102236 DOI: 10.1080/14734220601142878] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Increasing lines of evidence suggest a key role of oxidative stress in neurodegenerative diseases. Alzheimer's disease, Parkinson's disease, myoclonus epilepsy of the Unverricht-Lundborg type, spinocerebellar degeneration, tardive dyskinesia and Down's syndrome have been associated with several mitochondrial alterations. Oxidative stress can decrease cellular bioenergetic capacity, which will then increase the generation of reactive oxygen species resulting in cellular damage and programmed cell death. First, this review examines the mechanisms of action of N-acetylcysteine (NAC), an antioxidant and a free radical-scavenging agent that increases intracellular GSH, at the cellular level. NAC can act as a precursor for glutathione synthesis as well as a stimulator of the cytosolic enzymes involved in glutathione regeneration. The chemical properties of NAC include redox interactions, particularly with other members of the group XIV elements (selenium, etc.) and ebselen, a lipid-soluble seleno-organic compound. Second, NAC has been shown to protect against oxidative stress-induced neuronal death in cultured granule neurons. Recent findings on the protective effect of NAC against 4-hydroxynonenal (HNE)-induced toxicity in cerebellar granule neurons are summarized. Finally, the protective pharmacokinetics of NAC in humans and the possible usefulness of NAC for the treatment of neurodegenerative diseases are discussed with reference to basic and clinical studies.
Collapse
Affiliation(s)
- Motoki Arakawa
- Research Unit of Pharmacology, Department of Clinical Pharmacy, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, 274-8555 Funabashi-shi, Chiba, Japan
| | - Yoshihisa Ito
- Research Unit of Pharmacology, Department of Clinical Pharmacy, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, 274-8555 Funabashi-shi, Chiba, Japan
| |
Collapse
|
15
|
Arakawa M, Ishimura A, Arai Y, Kawabe K, Suzuki S, Ishige K, Ito Y. N-Acetylcysteine and ebselen but not nifedipine protected cerebellar granule neurons against 4-hydroxynonenal-induced neuronal death. Neurosci Res 2006; 57:220-9. [PMID: 17125867 DOI: 10.1016/j.neures.2006.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 11/24/2022]
Abstract
4-Hydroxynonenal (HNE), an aldehydic product of membrane lipid peroxidation, has been shown to induce neurotoxicity in various types of neurons. To clarify the mechanisms underlying HNE-induced neurotoxicity, the effects of antioxidants (N-acetylcysteine (NAC) and ebselen with or without NAC pretreatment) and Ca(2+)-related reagents were examined in cerebellar granule neurons. The decreases in neuronal survival and mitochondrial membrane potential induced by HNE were suppressed by pretreatment with NAC at concentrations of 500 and 1000 microM. HNE-induced protein modification and reactive oxygen species generation were also suppressed by pretreatment with NAC at 1000 microM. Although simultaneous application of ebselen (10 microM) did not protect against HNE-induced neurotoxicity, it completely suppressed HNE-induced injury after pretreatment with NAC at 300 microM. HNE increased [Ca(2+)](i) levels, and this increase was significantly attenuated by simultaneous application of nifedipine (10 microM) or EGTA (1000 microM), but not by MK-801 or CNQX. However, none of these Ca(2+)-related reagents was able to prevent HNE-induced neuronal death or mitochondrial injury. These results suggest that pretreatment with a low concentration of NAC dramatically potentiates the neuroprotective activity of ebselen, and that HNE-induced increase in [Ca(2+)](i) is not involved in HNE-induced neuronal death in cerebellar granule neurons.
Collapse
Affiliation(s)
- Motoki Arakawa
- Research Unit of Pharmacology, Department of Clinical Pharmacy, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
van Gemert NG, Joëls M. Effect of chronic stress and mifepristone treatment on voltage-dependent Ca2+ currents in rat hippocampal dentate gyrus. J Neuroendocrinol 2006; 18:732-41. [PMID: 16965291 DOI: 10.1111/j.1365-2826.2006.01472.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic unpredictable stress affects many properties in rat brain. In the dentate gyrus, among other things, increased mRNA expression of the Ca2+ channel alpha1C subunit has been found after 21 days of unpredictable stress in combination with acute corticosterone application (100 nM). In the present study, we examined: (i) whether these changes in expression are accompanied by altered Ca2+ currents in rat dentate granule cells recorded on day 22 and (ii) whether treatment with the glucocorticoid receptor antagonist mifepristone during the last 4 days of the stress protocol normalises the putative stress-induced effects. Three weeks of unpredictable stress did not affect Ca2+ current amplitude in dentate granule cells under basal conditions (i.e. after incubation with vehicle solution). However, the sustained Ca2+ current component (which largely depends on the alpha1C subunit) was significantly increased in amplitude after chronic stress when slices had been treated with corticosterone 1-4 h before recording. These findings suggest that dentate granule cells are exposed to an increased calcium load after exposure to an acute stressor when they have a history of chronic stress, potentially leading to increased vulnerability of the cells. The present results are in line with the molecular data on Ca2+ channel alpha1C subunit expression. A significant three-way interaction between chronic stress, corticosterone application and mifepristone treatment was found, indicating that the combined effect of stress and corticosterone depends on mifepristone cotreatment. Interestingly, current density (defined as total current divided by capacitance) did not differ between the groups. This indicates that the observed changes in Ca2+ current amplitude could be attributable to changes in cell size.
Collapse
Affiliation(s)
- N G van Gemert
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam, Kruislaan, Amsterdam, The Netherlands.
| | | |
Collapse
|
17
|
Akaishi T, Nakazawa K, Sato K, Ohno Y, Ito Y. 4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyrus in vitro. Neurosci Lett 2005; 370:155-9. [PMID: 15488314 DOI: 10.1016/j.neulet.2004.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/23/2004] [Accepted: 08/08/2004] [Indexed: 11/18/2022]
Abstract
Increased oxyradical production and membrane lipid peroxidation (MLP) occur under physiological and degenerative conditions in neurons. We investigated whether 4-hydroxynonenal (4HN), one of the membrane lipid peroxidation products, affects long-term potentiation (LTP) in the rat dentate gyrus in vitro. Treatment of hippocampal slices with 4HN (10 microM) enhanced LTP without affecting basal evoked potentials. The enhancement was completely inhibited by 2 microM nifedipine, a blocker of L-type Ca2+ channels. In cultured dentate gyrus neurons, treatment of the cells with 4HN for 24 h resulted in a significant amount of cell death that was detoxified by glutathione, whereas short-term treatment with 4HN (< or = 6 h) had no effect. Nifedipine partially but significantly suppressed the 4HN-induced cell death. These results suggest that 4HN modulates LTP and induces delayed cell death through L-type Ca2+ channel activation in the dentate gyrus. 4HN thereby plays an important role in both physiological and pathophysiological events in the hippocampus.
Collapse
Affiliation(s)
- Tatsuhiro Akaishi
- Department of Pharmacology, College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan
| | | | | | | | | |
Collapse
|