1
|
Takahashi M, Khan S, Cline MA, Tachibana T. Possible role of neuropeptide Y on zymosan- and lipopolysaccharide-induced change in gastrointestinal feed passage via the medulla oblongata in chicks. Comp Biochem Physiol A Mol Integr Physiol 2024; 289:111565. [PMID: 38147959 DOI: 10.1016/j.cbpa.2023.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Zymosan is a fungi-derived pathogen-associated molecular pattern. It activates the immune system and induces the reduction of feed passage rate in the gastrointestinal tract of vertebrates including birds. However, the mechanism mediating the zymosan-induced inhibition of feed passage in the gastrointestinal tract remains unknown. Since the medulla oblongata regulates the digestive function, it is plausible that the medulla oblongata is involved in the zymosan-induced inhibition of feed passage. The present study was performed to identify the genes that were affected by zymosan within the medulla oblongata of chicks (Gallus gallus) using an RNA sequencing approach. We found that mRNAs of several bioactive molecules including neuropeptide Y (NPY) were increased with an intraperitoneal (IP) injection of zymosan. The increase of mRNA expression of NPY in the medulla oblongata was also observed after the IP injection of lipopolysaccharide, derived from gram-negative bacteria. These results suggest that medullary NPY is associated with physiological changes during fungal and bacterial infection. Furthermore, we found that intracerebroventricular injection of NPY and its receptor agonists reduced the feed passage from the crop. Additionally, the injection of NPY reduced the feed passage from the proventriculus to lower digestive tract. NPY also suppressed the activity of duodenal activities of amylase and trypsin. The present study suggests that fungi- and bacteria-induced activation of the immune system may activate the NPY neurons in the medulla oblongata and thereby reduce the digestive function in chicks.
Collapse
Affiliation(s)
- Maki Takahashi
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Sakirul Khan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, United States
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| |
Collapse
|
2
|
Biomolecules Triggering Altered Food Intake during Pathogenic Challenge in Chicks. J Poult Sci 2023; 60:2023009. [PMID: 36969710 PMCID: PMC10031682 DOI: 10.2141/jpsa.2023009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
Food intake is regulated by several complicated synergistic mechanisms that are affected by a variety of internal and external influences. Some of these factors include those that are released from pathogens such as bacteria, fungi, and viruses, and most of these factors are associated with suppression of the chick's food intake. Although chicks are well-known to decrease their food intake when they experience a pathogenic challenge, the mechanisms that mediate this type of satiety are poorly understood. One of the goals of our research group has been to better understand these mechanisms in chicks. We recently provided evidence that pathogen-associated molecular patterns, which are recognized by pattern-recognition receptors such as Toll-like receptors, likely contribute to satiety in chicks that are experiencing a pathogenic challenge. Additionally, we identified several inflammatory cytokines, including interleukin-1β, tumor necrosis factor-like cytokine 1A, prostaglandins, and nitric oxide, that likely contribute to satiety during a pathogenic challenge. This review summarizes the current knowledge on pathogen-induced satiety in chicks mainly accumulated through our recent research. The research will give good information to improve the loss of production during infection in poultry production in the future.
Collapse
|
3
|
Tachibana T, Nakatani A, Islam Khan MS, Makino R, Cline MA. Behavioral and physiological responses to intraperitoneal injection of zymosan in chicks. Domest Anim Endocrinol 2020; 72:106471. [PMID: 32279040 DOI: 10.1016/j.domaniend.2020.106471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/12/2020] [Accepted: 03/01/2020] [Indexed: 02/07/2023]
Abstract
Zymosan is a cell wall component of the yeast Saccharomyces cerevisiae and produces severe inflammatory responses in mammals. When zymosan is peripherally injected in mammals, it induces several behavioral and physiological changes including anorexia and hyperthermia. However, to our knowledge, behavioral and physiological responses to zymosan have not yet been clarified in birds. Therefore, the purpose of the present study was to determine if intraperitoneal injection of zymosan affects food intake, voluntary activity, cloacal temperature, plasma corticosterone (CORT) and glucose concentrations, and splenic gene expression of cytokines in chicks (Gallus gallus). Intraperitoneal injection of zymosan (2.5 mg) significantly decreased food intake, voluntary activity, and plasma glucose concentration, and increased plasma CORT concentration. The injection of 0.5 mg zymosan significantly increased cloacal temperature, while 2.5 mg zymosan had a tendency to increase it. Finally, 2.5 mg zymosan significantly increased the splenic gene expression of interleukin-1β (IL-1β), IL-6, IL-8, interferon-γ, and tumor necrosis factor-like cytokine 1A. The present results suggest that zymosan would be one of components which induces nonspecific symptoms including anorexia, hypoactivity, hyperthermia, and stress responses, under fungus infection in chicks.
Collapse
Affiliation(s)
- T Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - A Nakatani
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - M S Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon 791-0295, Ehime, Japan
| | - R Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 24061 Blacksburg, VA, USA
| |
Collapse
|
4
|
Dangarembizi R, Rummel CD, Roth J, Erlwanger KH, Madziva MT, Harden LM. Pyrogenic and neuroinflammatory properties of zymosan and its potential as an alternative to live yeast in antipyretic drug testing. Facets (Ott) 2019. [DOI: 10.1139/facets-2018-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Zymosan, an immunogenic cell wall extract of Saccharomyces cerevisiae has potential for use as an experimental pyrogen. However, the short-lived sickness responses noted with intraperitoneal and intra-articular administration of zymosan limits investigations on the long-term effectiveness of antipyretic drugs. Thus, there remains a need to establish an alternative route of zymosan administration that could induce long-lived fevers and inflammation. We injected male Sprague Dawley rats (250–300 g) subcutaneously with zymosan (30 or 300 mg/kg) or saline; n = 7–8. We measured core body temperature, cage activity, food intake and body mass for 24 h after injection. Blood and brain samples were collected at 2, 8, and 18 h after injection. Zymosan (300 mg/kg) induced fever, lethargy, and anorexia, which lasted for 24 h. Zymosan-induced sickness responses were accompanied by increased blood plasma levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α; activation of inflammatory transcription factors (nuclear factor (NF) for IL-6, signal transducer and activator of transcription (STAT)-3, and NF-κB) in the hypothalamus and circumventricular organs; and increased hypothalamic mRNA expression of TNF-α, IL-1β, and IL-6 and rate-limiting enzymes for prostaglandin synthesis. Our results confirm the suitability of subcutaneous administration of zymosan for screening antipyretic and anti-inflammatory drugs in rats.
Collapse
Affiliation(s)
- Rachael Dangarembizi
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
- Department of Physiology and Anatomy, Faculty of Medicine, National University of Science and Technology, P.O. Box AC 939, Ascot, Bulawayo, Zimbabwe
| | - Christoph D. Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Kennedy H. Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Michael T. Madziva
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Lois M. Harden
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| |
Collapse
|
5
|
Motaghi S, Jonaidi H, Jadidi J. Study of illness anorexia in birds by concentrating on roles of central and peripheral cyclooxygenases-1 and cyclooxygenases-2. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2385-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Araki R, Nishida S, Hiraki Y, Li F, Matsumoto K, Yabe T. Kamikihito Ameliorates Lipopolysaccharide-Induced Sickness Behavior via Attenuating Neural Activation, but Not Inflammation, in the Hypothalamic Paraventricular Nucleus and Central Nucleus of the Amygdala in Mice. Biol Pharm Bull 2016; 39:289-94. [PMID: 26830488 DOI: 10.1248/bpb.b15-00707] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sickness behavior is a series of behavioral and psychological changes that develop in those stricken with cancers and inflammatory diseases. The etiological mechanism of sickness behavior is not known in detail, and consequently there are no established standard therapies. Kamikihito (KKT), a Kampo (traditional Japanese herbal) medicine composed of 14 herbs, has been used clinically to treat psychiatric dysfunction. Previously, we found that KKT ameliorated sickness behavior in mice inoculated with murine colon 26 adenocarcinoma cells. In this study, we examined the effects of KKT on bacterial endotoxin lipopolysaccharide (LPS)-induced sickness behavior in mice. The administration of LPS caused the emotional aspects of sickness behavior, such as loss of object exploration, social interaction deficit, and depressive-like behavior. LPS also induced mRNA expression for cyclooxygenase (COX)-2, interleukin (IL)-1β and IL-6, and increased the number of c-Fos immunopositive cells in the hypothalamus and amygdala. KKT ameliorated the behavioral changes and reversed the increases in c-Fos immunopositive cells in the two brain regions, but did not influence the mRNA expression. These results suggest that KKT ameliorates sickness behavior via the suppression of neural activation without anti-inflammatory effects, and that KKT has the potential to treat sickness behavior.
Collapse
Affiliation(s)
- Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | | | | | | | | | | |
Collapse
|
7
|
Onaka Y, Shintani N, Nakazawa T, Haba R, Ago Y, Wang H, Kanoh T, Hayata-Takano A, Hirai H, Nagata KY, Nakamura M, Hashimoto R, Matsuda T, Waschek JA, Kasai A, Nagayasu K, Baba A, Hashimoto H. CRTH2, a prostaglandin D2 receptor, mediates depression-related behavior in mice. Behav Brain Res 2015; 284:131-7. [DOI: 10.1016/j.bbr.2015.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/27/2015] [Accepted: 02/01/2015] [Indexed: 12/11/2022]
|
8
|
Yamawaki H, Mihara H, Suzuki N, Nishizono H, Uchida K, Watanabe S, Tominaga M, Sugiyama T. Role of transient receptor potential vanilloid 4 activation in indomethacin-induced intestinal damage. Am J Physiol Gastrointest Liver Physiol 2014; 307:G33-40. [PMID: 24789205 DOI: 10.1152/ajpgi.00105.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrointestinal ulcers and bleeding are serious complications of nonsteroidal anti-inflammatory drug (NSAID) use. Although administration of antibiotics and Toll-like receptor 4 knockdown mitigate NSAID-induced enteropathy, the molecular mechanism of these effects is poorly understood. Intestinal hyperpermeability is speculated to trigger the initial damage due to NSAID use. Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel expressed throughout the gastrointestinal tract epithelium that is activated by temperature, extension, and chemicals such as 5,6-epoxyeicosatrienoic acid (5,6-EET). The aim of this study was to investigate the possible role of TRPV4 in NSAID-induced intestinal damage. TRPV4 mRNA and protein expression was confirmed by RT-PCR and immunochemistry, respectively, in mouse and human tissues while TRPV4 channel activity of the intestinal cell line IEC-6 was assessed by Ca(2+)-imaging analysis. TRPV4 activators or the NSAID indomethacin significantly decreased transepithelial resistance (TER) in IEC-6 cells, and indomethacin-induced TER decreases were inhibited by specific TRPV4 inhibitors or small-interfering RNA TRPV4 knockdown, as well as by the epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, which decreased 5,6-EET levels. In TRPV4 knockout mice, indomethacin-induced intestinal damage was significantly reduced compared with WT mice. Taken together, these results show that TRPV4 activation in the intestinal epithelium caused epithelial hyperpermeability in response to NSAID-induced arachidonic acid metabolites and contributed to NSAID-induced intestinal damage. Thus, TRPV4 could be a promising new therapeutic target for the prevention of NSAID-induced intestinal damage.
Collapse
Affiliation(s)
- Hidemoto Yamawaki
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroshi Mihara
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nobuhiro Suzuki
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hirofumi Nishizono
- Division of Animal Experimental Laboratory, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Kunitoshi Uchida
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan; and
| | - Shiro Watanabe
- Division of Nutritional Biochemistry, Institute of Natural Medicines, University of Toyama, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, Japan; and
| | - Toshiro Sugiyama
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan;
| |
Collapse
|
9
|
Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model. J Neurosci 2014; 34:2514-23. [PMID: 24523542 DOI: 10.1523/jneurosci.1407-13.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2) is a second prostaglandin D2 receptor involved in mediating the allergic response; however, its central function is not yet known. Here, we demonstrate that central CRTH2 mediates emotional impairment. Lipopolysaccharide (LPS)-induced decreases in social interaction and novel exploratory behavior were observed in wild-type (CRTH2(+/+)) mice but not CRTH2-deficient (CRTH2(-/-)) mice, but both genotypes showed hypolocomotion and anorexia following LPS injection. Tumor (colon 26) inoculation, a more pathologically relevant model, induced decreases in social interaction and novel exploratory behavior in CRTH2(+/+), but not CRTH2(-/-) mice. In addition, the CRTH2 antagonists including clinically available ramatroban reversed impaired social interaction and novel exploratory behavior after either LPS or tumor inoculation in CRTH2(+/+) mice. Finally, LPS-induced c-Fos expression in the hypothalamic paraventricular nucleus (PVN) and central amygdala (CeA) was selectively abolished in CRTH2(-/-) mice. These results show that CRTH2 participates in LPS-induced emotional changes and activation in the PVN and CeA. Our study provides the first evidence that central CRTH2 regulates specific emotional behaviors, and that CRTH2 antagonism has potential as a therapeutic target for behavioral symptoms associated with tumors and infectious diseases.
Collapse
|
10
|
Cattle bile aggravates diclofenac sodium-induced small intestinal injury in mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:315858. [PMID: 21584236 PMCID: PMC3092561 DOI: 10.1155/2011/315858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/18/2022]
Abstract
Cattle bile (CB) has long been used in Japan as an ingredient of digestive medicines. Bile acids are major chemical constituents of CB, and CB ingestion is assumed to affect small intestinal injury induced by nonsteroidal anti-inflammatory drugs (NSAIDs). Mice were fed a diet supplemented with or without CB for 7 days and treated with diclofenac sodium (DIF) to induce small intestinal injury. Lesion formation was enhanced, and PGE2 content and COX expression levels were elevated in the small intestine of DIF-treated mice fed the CB diet compared with those fed the control diet. The administration of a reconstituted mixture of bile acids found in CB enhanced lesion formation in DIF-treated mice. CB administration elevated the contents of CB-derived bile acids in the small intestine, some of which exhibited a high cytotoxicity to cultured intestinal epithelial cells. These results suggest that the elevated levels of CB-derived cytotoxic bile acids in the small intestine contribute to the aggravation of DIF-induced small intestinal injury. The use of CB may be limited during the therapy of inflammatory diseases with NSAIDs.
Collapse
|
11
|
Prostaglandins mediate depressive-like behaviour induced by endotoxin in mice. Behav Brain Res 2010; 215:146-51. [PMID: 20654654 DOI: 10.1016/j.bbr.2010.07.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/15/2010] [Accepted: 07/15/2010] [Indexed: 11/22/2022]
Abstract
Sickness behaviour appears to be the expression of a central motivational state that reorganises the organism's priorities to cope with infectious pathogens. To evaluate the possible participation of prostaglandins in lipopolysaccharide-induced sickness behaviours, mice were submitted to the tail suspension test (TST), forced swim test (FST), open field test and dark-light box test. Lipopolysaccharide (LPS, 100microg/kg; i.p.) administration increased the time spent immobile in the TST, increased the time spent floating in the FST, and depressed locomotor activity in the open field. Indeed, treatment with LPS decreased the total number of transitions made between the dark and light compartments of the apparatus. Pretreatment with indomethacin (10mg/kg; i.p.) or nimesulide (5mg/kg) blocked behavioural changes induced by LPS in the FTS, TST, open field and light-dark box test. This effect was similar to pretreatment with dexamethasone (1mg/kg), which is a steroidal drug that inhibits immune and inflammatory responses, including cytokine production. These findings confirm previous observations that have reported LPS-induced sickness behaviours. In addition, they provide evidence that the synthesis of prostaglandins is necessary for changes in depressive-like and exploratory behaviours in mice, which is supported by the fact that COX inhibitors also attenuate LPS-induced behavioural changes.
Collapse
|
12
|
Russell FA, Fernandes ES, Courade JP, Keeble JE, Brain SD. Tumour necrosis factor alpha mediates transient receptor potential vanilloid 1-dependent bilateral thermal hyperalgesia with distinct peripheral roles of interleukin-1beta, protein kinase C and cyclooxygenase-2 signalling. Pain 2009; 142:264-274. [PMID: 19231080 DOI: 10.1016/j.pain.2009.01.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 01/15/2009] [Accepted: 01/21/2009] [Indexed: 11/21/2022]
Abstract
TNFalpha plays a pivotal role in rheumatoid arthritis (RA) but little is known of the mechanisms that link the inflammatory and nociceptive effects of TNFalpha. We have established a murine model of TNFalpha-induced TRPV1-dependent bilateral thermal hyperalgesia that then allowed us to identify distinct peripheral mechanisms involved in mediating TNFalpha-induced ipsilateral and contralateral hyperalgesia. Thermal hyperalgesia and inflammation were assessed in both hindpaws following unilateral intraplantar (i.pl.) TNFalpha. The hyperalgesic mechanisms were analysed through pharmacogenetic approaches involving TRPV1(-/-) mice and TRPV1 antagonists. To study the mediators downstream of TNFalpha, cyclooxygenase (COX) and PKC inhibitors were utilised and cytokine and prostaglandin levels assessed. The role of neutrophils was determined through use of the selectin inhibitor, fucoidan. We show that TNFalpha (10pmol) causes thermal hyperalgesia (1-4h) in the ipsilateral inflamed and contralateral uninjured hindpaws, which is TRPV1-dependent. GF109203X, a PKC inhibitor, suppressed the hyperalgesia indicating that PKC is involved in TRPV1 sensitisation. Ipsilateral COX-2-derived prostaglandins were also crucial to the development of the bilateral hyperalgesia. The prevention of neutrophil accumulation with fucoidan attenuated hyperalgesia at 4 but not at 1h, indicating a role in the maintenance but not in the induction of bilateral hyperalgesia. However, TNFalpha-induced IL-1beta generation in both paws and the presence of local IL-1beta in the contralateral paw were essential for the development of bilateral hyperalgesia. These results identify a series of peripheral events through which TNFalpha triggers and maintains bilateral inflammatory pain. This potentially allows a better understanding of mechanisms involved in TNFalpha-dependent pain pathways in symmetrical diseases such as arthritis.
Collapse
Affiliation(s)
- Fiona A Russell
- Cardiovascular Division, Franklin-Wilkins Building, King's College London, Waterloo Campus, 150 Stamford St., London SE1 9NH, UK IPC 351, Pain Therapeutic Area, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK
| | | | | | | | | |
Collapse
|
13
|
Rummel C, Inoue W, Sachot C, Poole S, Hübschle T, Luheshi GN. Selective contribution of interleukin-6 and leptin to brain inflammatory signals induced by systemic LPS injection in mice. J Comp Neurol 2008; 511:373-95. [DOI: 10.1002/cne.21850] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Saito M, Watanabe S. Differential modulation of lipopolysaccharide- and zymosan-induced hypophagia by dexamethasone treatment. Pharmacol Biochem Behav 2008; 90:428-33. [DOI: 10.1016/j.pbb.2008.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 03/25/2008] [Accepted: 03/29/2008] [Indexed: 10/22/2022]
|
15
|
Teeling JL, Perry VH. Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 2008; 158:1062-73. [PMID: 18706982 DOI: 10.1016/j.neuroscience.2008.07.031] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/07/2008] [Accepted: 07/12/2008] [Indexed: 01/23/2023]
Abstract
We have all at some time experienced the non-specific symptoms that arise from being ill following a systemic infection. These symptoms, such as fever, malaise, lethargy and loss of appetite are often referred to as "sickness behavior" and are a consequence of systemically produced pro-inflammatory mediators. These inflammatory mediators signal to the brain, leading to activation of microglial cells, which in turn, signal to neurons to induce adaptive metabolic and behavioral changes. In normal healthy persons this response is a normal part of our defense, to protect us from infection, to maintain homeostasis and causes no damage to neurons. However, in animals and patients with chronic neurodegenerative disease, multiple sclerosis, stroke and even during normal aging, systemic inflammation leads to inflammatory responses in the brain, an exaggeration of clinical symptoms and increased neuronal death. These observations imply that, as the population ages and the number of individuals with CNS disorders increases, relatively common systemic infections and inflammation will become significant risk factors for disease onset or progression. In this review we discuss the underlying mechanisms responsible for sickness behavior induced by systemic inflammation in the healthy brain and how they might be different in individuals with CNS pathology.
Collapse
Affiliation(s)
- J L Teeling
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | |
Collapse
|
16
|
Teeling JL, Felton LM, Deacon RMJ, Cunningham C, Rawlins JNP, Perry VH. Sub-pyrogenic systemic inflammation impacts on brain and behavior, independent of cytokines. Brain Behav Immun 2007; 21:836-50. [PMID: 17367989 DOI: 10.1016/j.bbi.2007.01.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/11/2007] [Accepted: 01/23/2007] [Indexed: 12/26/2022] Open
Abstract
Systemic inflammation impacts on the brain and gives rise to behavioral changes, often referred to as 'sickness behavior'. These symptoms are thought to be mainly mediated by pro-inflammatory cytokines. We have investigated the communication pathways between the immune system and brain following sub-pyrogenic inflammation. Low grade systemic inflammation was induced in mice using lipopolysaccharide (LPS); 1-100 microg/kg to mimic aspects of bacterial infection. Changes in fever, open-field activity, burrowing and consumption of glucose solution were assessed and immune activation was studied in the periphery and brain by measuring cytokine production, and immunohistochemistry to study changes in immune cell phenotype. Sub-pyrogenic inflammation resulted in changes in a species-typical, untrained behavior (burrowing) that depends on the integrity of the hippocampus. Increased expression of cytokines was observed in the periphery and selected regions of the brain which coincided with changes in behavior. However, peripheral neutralization of LPS-induced pro-inflammatory cytokines IL-1beta, IL-6 and TNF-alpha did not abrogate the LPS-induced behavioral changes nor affect CNS cytokine synthesis. In contrast, pretreatment of mice with indomethacin completely prevented LPS-induced behavior changes, without affecting cytokine levels. Taken together, these experiments suggest a key role for prostaglandins, rather than cytokines, in communicating to the brain.
Collapse
Affiliation(s)
- J L Teeling
- CNS Inflammation Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, UK.
| | | | | | | | | | | |
Collapse
|