1
|
Li S, Gao R, Han X, Wang K, Kang B, Ma X. MALAT1/miR-582-5p/GALNT1/MUC1 axis modulates progression of AML leukemia stem cells by regulating JAK2/STAT3 pathway. Ann Hematol 2024:10.1007/s00277-024-06043-w. [PMID: 39428449 DOI: 10.1007/s00277-024-06043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Acute myeloid leukemia (AML) is characterized by uncontrolled clonal expansion and differentiation block of immature myeloid cells. Some studies have shown that leukemia stem cells (LSC) are thought to be responsible for the initiation and development of leukemia. Moreover, abnormal O-glycosylation is a key modification in the process of cancer malignancy. In this study, GALNT1 expression was significantly upregulated in LSCs, while knockdown of GALNT1 inhibited cell viability and promoted apoptosis. Importantly, GALNT1 was the direct target of miR-582-5P, and MALAT1 directly interacted with miR-582-5P. In addition, Our investigation corroborated that MALAT1 functioned as an endogenous sponge of miR-582-5P to regulate mucin1 (MUC1) expression, catalyzed by GALNT1, which modulated the activity of JAK2/STAT3 pathway. MALAT1 and MUC1 were targets of transcription factor STAT3 and were regulated by STAT3. In general, these new findings indicated that MALAT1/miR-582-5P/GALNT1 axis is involved in the progression of LSCs, illuminating the possible mechanism mediated by O-glycosylated MUC1 via JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Si Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning, 116011, China
| | - Rui Gao
- Department of Blood Transfusion, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning, P.R. China
| | - Xu Han
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning, P.R. China
| | - Kai Wang
- The Institute of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning, P.R. China
| | - Bingyu Kang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning, 116011, China
| | - Xiaolu Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning, 116011, China.
| |
Collapse
|
2
|
Pourhajibagher M, Alaeddini M, Etemad-Moghadam S, Parker S, Bahador A. Effects of Kojic Acid-mediated Sonodynamic Therapy as a Matrix Metalloprotease-9 Inhibitor against Oral Squamous Cell Carcinoma: A Bioinformatics Screening and In Vitro Analysis. Curr Drug Discov Technol 2024; 21:e011223224137. [PMID: 38073102 DOI: 10.2174/0115701638266082231124055825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 08/30/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a type of cancer that is responsible for a significant amount of morbidity and mortality worldwide. Researchers are searching for promising therapeutic methods to manage this cancer. In this study, an in silico approach was used to evaluate the activity of sonodynamic therapy (SDT) based on the use of Kojic acid as a sonosensitizer to inhibit matrix metalloprotease-9 (MMP-9) in OSCC. MATERIALS AND METHODS The three-dimensional structure of MMP-9 was predicted and validated by computational approaches. The possible functional role of MMP-9 was determined in terms of Gene Ontology (GO) enrichment analysis. In silico, molecular docking was then performed to evaluate the binding energies of Kojic acid with MMP-9, and ADME parameters and toxicity risks were predicted. The pharmacokinetics and drug-likeness properties of Kojic acid were assessed. Moreover, after the determination of the cytotoxicity effect of Kojic acid-mediated SDT, the change of mmp-9 gene expression was assessed on OSCC cells. RESULTS The results of the study showed that Kojic acid could efficiently interact with MMP-9 protein with a strong binding affinity. Kojic acid obeyed Lipinski's rule of five without violation and exhibited drug-likeness. The cytotoxic effects of Kojic acid and ultrasound waves on the OSCC cells were dose-dependent, and the lowest expression level of the mmp-9 gene was observed in SDT. CONCLUSIONS Overall, Kojic acid-mediated SDT as an MMP-9 inhibitor can be a promising adjuvant treatment for OSCC. The study highlights the potential of In silico approaches to evaluate therapeutic methods for cancer treatment.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
3
|
Huang CY, Liu IH, Huang XZ, Chen HJ, Chang ST, Chang ML, Ho YT, Chang HT. Antimelanogenesis Effects of Leaf Extract and Phytochemicals from Ceylon Olive ( Elaeocarpus serratus) in Zebrafish Model. Pharmaceutics 2021; 13:pharmaceutics13071059. [PMID: 34371750 PMCID: PMC8309042 DOI: 10.3390/pharmaceutics13071059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023] Open
Abstract
The melanogenesis inhibition effect in zebrafish (Danio rerio) and antityrosinase activity of the ethanolic extract and its phytochemicals from Ceylon olive (Elaeocarpus serratus Linn.) leaves were investigated in this study. Among the leaf extract and four soluble fractions, the ethyl acetate soluble fraction exhibits the best antityrosinase and antimelanogenesis activities. One phenolic acid, gallic acid, and two flavonoids, myricetin and mearnsetin, are isolated from the active subfractions through the bioassay-guided isolation; their structures are elucidated based on the 1D and 2D NMR, FTIR, UV, and MS spectroscopic analyses. These compounds have significant antityrosinase activity whether using l-tyrosine or l-DOPA as the substrate; mearnsetin shows the optimal activity. In the enzyme kinetic investigation, both gallic acid and mearnsetin are the competitive-type inhibitors against mushroom tyrosinase, and myricetin acts as a mixed-type tyrosinase inhibitor. Leaf extract and an ethyl acetate soluble fraction show effective performance in the inhibition of melanin formation in zebrafish embryos. Mearnsetin also possesses a promising antimelanogenesis effect, which is superior to the positive control, arbutin. Results reveal that the Ceylon olive leaf extract and its phytochemicals, especially mearnsetin, have the potential to be used as antimelanogenesis and skin-whitening ingredients.
Collapse
Affiliation(s)
- Chi-Ya Huang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan;
| | - Xiang-Zhe Huang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Hui-Jen Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Mei-Ling Chang
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei 104, Taiwan;
| | - Yu-Tung Ho
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
| | - Hui-Ting Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 106, Taiwan; (C.-Y.H.); (X.-Z.H.); (H.-J.C.); (S.-T.C.); (Y.-T.H.)
- Correspondence: ; Tel.: +886-2-3366-5880
| |
Collapse
|
4
|
In vitro antioxidant and antityrosinase activities of Manilkara kauki. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:153-162. [PMID: 32697742 DOI: 10.2478/acph-2021-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 01/19/2023]
Abstract
Manilkara kauki L. Dubard is a tropical plant in the genus Manilkara of family Sapotaceae. This study investigated the total phenolic and flavonoid contents, and antioxidant and antityrosinase activities in different parts of M. kauki (fruits, leaves, seeds, stem barks and woods) and in fractions of stem barks. The total phenolic and flavonoid contents of the methanol and aqueous crude extracts of different parts of M. kauki ranged from 10.87 to 176.56 mg GAE (gallic acid equivalents) per gram of crude extract and 14.33 to 821.67 mg QE (quercetin equivalents) per gram of crude extract, resp. Leaves and stem barks exhibited higher total phenolic and flavonoid contents and antioxidant and anti-tyrosinase activities than fruits, seeds and woods. Stem barks were sequentially extracted with n-hexane, ethyl acetate, methanol and water and then the fractionated extracts were subjected to antioxidant and antityrosinase activities testing. The ethyl acetate and methanol extracts of stem barks exhibited higher total phenolic and flavonoid contents and antioxidant and antityrosinase activities than the n-hexane and aqueous extracts. Moreover, ethyl acetate extract of M. kauki stem exhibited the highest antityrosinase activity. It may be a potential source of tyrosinase inhibitors for pharmaceutical and cosmetic applications.
Collapse
|
5
|
Emerging Roles of Ephexins in Physiology and Disease. Cells 2019; 8:cells8020087. [PMID: 30682817 PMCID: PMC6406967 DOI: 10.3390/cells8020087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Dbl (B-cell lymphoma)-related guanine nucleotide exchange factors (GEFs), the largest family of GEFs, are directly responsible for the activation of Rho family GTPases and essential for a number of cellular events such as proliferation, differentiation and movement. The members of the Ephexin (Eph-interacting exchange protein) family, a subgroup of Dbl GEFs, initially were named for their interaction with Eph receptors and sequence homology with Ephexin1. Although the first Ephexin was identified about two decades ago, their functions in physiological and pathological contexts and regulatory mechanisms remained elusive until recently. Ephexins are now considered as GEFs that can activate Rho GTPases such as RhoA, Rac, Cdc42, and RhoG. Moreover, Ephexins have been shown to have pivotal roles in neural development, tumorigenesis, and efferocytosis. In this review, we discuss the known and proposed functions of Ephexins in physiological and pathological contexts, as well as their regulatory mechanisms.
Collapse
|
6
|
Li Y, Zeng C, Hu J, Pan Y, Shan Y, Liu B, Jia L. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J Hematol Oncol 2018; 11:89. [PMID: 29970122 PMCID: PMC6029165 DOI: 10.1186/s13045-018-0632-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancer (CRC) arises in a multistep molecular network process, which is from either discrete genetic perturbation or epigenetic dysregulation. The long non-coding RNAs (lncRNAs), emerging as key molecules in human malignancy, has become one of the hot topics in RNA biology. Aberrant O-glycosylation is a well-described hallmark of many cancers. GALNT7 acts as a glycosyltransferase in protein O-glycosylation, involving in the occurrence and development of CRC. Methods The microarrays were used to survey the lncRNA and mRNA expression profiles of primary CRC cell line SW480 and metastatic CRC cell line SW620. Cell proliferation, migration, invasion, and apoptosis were assayed. Xenograft mouse models were used to determine the role of lncRNA-SNHG7 in CRC in vivo. In addition, CNC analysis and competing endogenous analysis were used to detect differential SNHG7 and relational miRNAs expression in CRC cell lines. Results SNHG7 expression showed a high fold (SW620/SW480) in CRC microarrays. The CRC patients with high expression of SNHG7 had a significantly poor prognosis. Furthermore, SNHG7 promoted CRC cell proliferation, metastasis, mediated cell cycle, and inhibited apoptosis. SNHG7 and GALNT7 were observed for co-expression by CNC analysis, and a negative correlation of SNHG7 and miR-34a were found by competing endogenous RNA (ceRNA) analysis. Further results indicated that SNHG7 facilitated the proliferation and metastasis as a competing endogenous RNA to regulate GALNT7 expression by sponging miR-34a in CRC cell lines. SNHG7 also played the oncogenic role in regulating PI3K/Akt/mTOR pathway by competing endogenous miR-34a and GALNT7. Conclusion The CRC-related SNHG7 and miR-34a might be implicated in CRC progression via GALNT7, suggesting the potential usage of SNHG7/miR-34a/GALNT7 axis in CRC treatment. Electronic supplementary material The online version of this article (10.1186/s13045-018-0632-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Changqian Zeng
- Medical College, Dalian University, Dalian, 116622, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
7
|
Shan Y, Ma J, Pan Y, Hu J, Liu B, Jia L. LncRNA SNHG7 sponges miR-216b to promote proliferation and liver metastasis of colorectal cancer through upregulating GALNT1. Cell Death Dis 2018; 9:722. [PMID: 29915311 PMCID: PMC6006356 DOI: 10.1038/s41419-018-0759-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests long noncoding RNAs (lncRNAs) play an important role in cancer progression. However, the function of lncRNA SNHG7 in colorectal cancer (CRC) remains unclear. In this study, SNHG7 expression was significantly upregulated in CRC tissues, especially in aggressive cases. In accordance, high level of SNHG7 was observed in CRC cell lines compared to normal colon cells. Furthermore, SNHG7 overexpression promoted the proliferation, migration, and invasion of CRC cell lines, while SNHG7 depletion inhibited invasion and cell viability in vitro. Mechanistically, knockdown of SNHG7 inhibited GALNT1 and EMT markers (E-cadherin and Vimentin). Importantly, SNHG7 directly interacted with miR-216b and downregulation of miR-216b reversed efficiently the suppression of GALNT1 induced by SNHG7 siRNA. Moreover, overexpression of SNHG7 significantly enhanced the tumorigenesis and liver metastasis of SW480 cells in vivo. SNHG7 positively regulated GALNT1 level through sponging miR-216b, and played an oncogenic role in CRC progression. Together, our study elucidated the role of SNHG7 as an miRNA sponge in CRC, and shed new light on lncRNA-directed diagnostics and therapeutics in CRC.
Collapse
Affiliation(s)
- Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, 116044, Dalian, Liaoning Province, China
| | - Jia Ma
- College of Laboratory Medicine, Dalian Medical University, 116044, Dalian, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, 116044, Dalian, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, 116044, Dalian, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, 116044, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, 116044, Dalian, Liaoning Province, China.
| |
Collapse
|
8
|
Hussain MRM, Hoessli DC, Fang M. N-acetylgalactosaminyltransferases in cancer. Oncotarget 2018; 7:54067-54081. [PMID: 27322213 PMCID: PMC5288242 DOI: 10.18632/oncotarget.10042] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant mucin-type O-glycosylation by glycosyltransferases is a well-described hallmark of many cancers and is also associated with additional non-cancerous developmental and metabolic disorders. The current review focuses on N-acetylgalactosaminyltransferase genes (GALNTs) and proteins (GalNAcTs) to illustrate their importance in cancer biology. Aberrant O-glycosylation by GalNAcTs activates a wide range of proteins that carry out interactions of sessile and motile cells affecting organogenesis, responses to agonists and stimulating hyperproliferation and metastatisation of neoplastic cells. As genome-wide analyses have provided abundant clues regarding under- or over-expressed genes that characterize different types of cancers, GALNTs and their transferase products have attracted attention by being unexpected actors in neoplastic contexts. We intend to review the current knowledge on GALNTs and their encoded transferases in cancer and suggest what could be the significance of such information in cancer pathogenesis and management.
Collapse
Affiliation(s)
- Muhammad Ramzan Manwar Hussain
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Daniel C Hoessli
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Hassan M, Abbas Q, Ashraf Z, Moustafa AA, Seo SY. Pharmacoinformatics exploration of polyphenol oxidases leading to novel inhibitors by virtual screening and molecular dynamic simulation study. Comput Biol Chem 2017; 68:131-142. [PMID: 28340400 DOI: 10.1016/j.compbiolchem.2017.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/23/2017] [Accepted: 02/21/2017] [Indexed: 01/30/2023]
Abstract
Polyphenol oxidases (PPOs)/tyrosinases are metal-dependent enzymes and known as important targets for melanogenesis. Although considerable attempts have been conducted to control the melanin-associated diseases by using various inhibitors. However, the exploration of the best anti-melanin inhibitor without side effect still remains a challenge in drug discovery. In present study, protein structure prediction, ligand-based pharmacophore modeling, virtual screening, molecular docking and dynamic simulation study were used to screen the strong novel inhibitor to cure melanogenesis. The 3D structures of PPO1 and PPO2 were built through homology modeling, while the 3D crystal structures of PPO3 and PPO4 were retrieved from PDB. Pharmacophore modeling was performed using LigandScout 3.1 software and top five models were selected to screen the libraries (2601 of Aurora and 727, 842 of ZINC). Top 10 hit compounds (C1-10) were short-listed having strong binding affinities for PPO1-4. Drug and synthetic accessibility (SA) scores along with absorption, distribution, metabolism, excretion and toxicity (ADMET) assessment were employed to scrutinize the best lead hit. C4 (name) hit showed the best predicted SA score (5.75), ADMET properties and drug-likeness behavior among the short-listed compounds. Furthermore, docking simulations were performed to check the binding affinity of C1-C10 compounds against target proteins (PPOs). The binding affinity values of complex between C4 and PPOs were higher than those of other complexes (-11.70, -12.1, -9.90 and -11.20kcal/mol with PPO1, PPO2, PPO3, or PPO4, respectively). From comparative docking energy and binding analyses, PPO2 may be considered as better target for melanogenesis than others. The potential binding modes of C4, C8 and C10 against PPO2 were explored using molecular dynamics simulations. The root mean square deviation and fluctuation (RMSD/RMSF) graphs results depict the significance of C4 over the other compounds. Overall, bioactivity and ligand efficiency profiles suggested that the proposed hit may be more effective inhibitors for melanogenesis.
Collapse
Affiliation(s)
- Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju 32588, Republic of Korea.
| | - Qamar Abbas
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju 32588, Republic of Korea.
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan.
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Westren Sydney University, Sydney, New South Wales, Australia; MARCS Institute for Brain and Behaviour, Westren Sydney University, Sydney, New South Wales, Australia.
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju 32588, Republic of Korea.
| |
Collapse
|
10
|
Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. COSMETICS 2016. [DOI: 10.3390/cosmetics3040036] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
11
|
Exploration of Novel Human Tyrosinase Inhibitors by Molecular Modeling, Docking and Simulation Studies. Interdiscip Sci 2016; 10:68-80. [DOI: 10.1007/s12539-016-0171-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 02/07/2023]
|
12
|
4-(Phenylsulfanyl)butan-2-One Suppresses Melanin Synthesis and Melanosome Maturation In Vitro and In Vivo. Int J Mol Sci 2015; 16:20240-57. [PMID: 26343635 PMCID: PMC4613201 DOI: 10.3390/ijms160920240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022] Open
Abstract
In this study, we screened compounds with skin whitening properties and favorable safety profiles from a series of marine related natural products, which were isolated from Formosan soft coral Cladiella australis. Our results indicated that 4-(phenylsulfanyl)butan-2-one could successfully inhibit pigment generation processes in mushroom tyrosinase platform assay, probably through the suppression of tyrosinase activity to be a non-competitive inhibitor of tyrosinase. In cell-based viability examinations, it demonstrated low cytotoxicity on melanoma cells and other normal human cells. It exhibited stronger inhibitions of melanin production and tyrosinase activity than arbutin or 1-phenyl-2-thiourea (PTU). Also, we discovered that 4-(phenylsulfanyl)butan-2-one reduces the protein expressions of melanin synthesis-related proteins, including the microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (Trp-1), dopachrome tautomerase (DCT, Trp-2), and glycoprotein 100 (GP100). In an in vivo zebrafish model, it presented a remarkable suppression in melanogenesis after 48 h. In summary, our in vitro and in vivo biological assays showed that 4-(phenylsulfanyl)butan-2-one possesses anti-melanogenic properties that are significant in medical cosmetology.
Collapse
|
13
|
Identification of biomarkers for esophageal squamous cell carcinoma using feature selection and decision tree methods. ScientificWorldJournal 2013; 2013:782031. [PMID: 24396308 PMCID: PMC3875100 DOI: 10.1155/2013/782031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/25/2013] [Indexed: 01/21/2023] Open
Abstract
Esophageal squamous cell cancer (ESCC) is one of the most common fatal human cancers. The identification of biomarkers for early detection could be a promising strategy to decrease mortality. Previous studies utilized microarray techniques to identify more than one hundred genes; however, it is desirable to identify a small set of biomarkers for clinical use. This study proposes a sequential forward feature selection algorithm to design decision tree models for discriminating ESCC from normal tissues. Two potential biomarkers of RUVBL1 and CNIH were identified and validated based on two public available microarray datasets. To test the discrimination ability of the two biomarkers, 17 pairs of expression profiles of ESCC and normal tissues from Taiwanese male patients were measured by using microarray techniques. The classification accuracies of the two biomarkers in all three datasets were higher than 90%. Interpretable decision tree models were constructed to analyze expression patterns of the two biomarkers. RUVBL1 was consistently overexpressed in all three datasets, although we found inconsistent CNIH expression possibly affected by the diverse major risk factors for ESCC across different areas.
Collapse
|
14
|
Paik SH, Kim HJ, Son HY, Lee S, Im SW, Ju YS, Yeon JH, Jo SJ, Eun HC, Seo JS, Kwon OS, Kim JI. Gene mapping study for constitutive skin color in an isolated Mongolian population. Exp Mol Med 2012; 44:241-9. [PMID: 22198297 PMCID: PMC3317488 DOI: 10.3858/emm.2012.44.3.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To elucidate the genes responsible for constitutive human skin color, we measured the extent of skin pigmentation in the buttock, representative of lifelong non-sun-exposed skin, and conducted a gene mapping study on skin color in an isolated Mongolian population composed of 344 individuals from 59 families who lived in Dashbalbar, Mongolia. The heritability of constitutive skin color was 0.82, indicating significant genetic association on this trait. Through the linkage analysis using 1,039 short tandem repeat (STR) microsatellite markers, we identified a novel genomic region regulating constitutive skin color on 11q24.2 with an logarithm of odds (LOD) score of 3.39. In addition, we also found other candidate regions on 17q23.2, 6q25.1, and 13q33.2 (LOD ≥ 2). Family-based association tests on these regions with suggestive linkage peaks revealed ten and two significant single nucleotide polymorphisms (SNPs) on the linkage regions of chromosome 11 and 17, respectively. We were able to discover four possible candidate genes that would be implicated to regulate human skin color: ETS1, UBASH3B, ASAM, and CLTC.
Collapse
Affiliation(s)
- Seung Hwan Paik
- Department of Dermatology Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang HM, Chen CY, Wen ZH. Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Exp Dermatol 2010; 20:242-8. [PMID: 21054558 DOI: 10.1111/j.1600-0625.2010.01161.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tyrosinase is known to be the first two and rate-limiting enzyme in the synthesis of melanin pigments responsible for colouring skin, hair and eyes. Tyrosinase inhibition is one major strategy used to treat hyperpigmentation. In human skin melanocytes, the cellular tyrosinase inhibition was examined by the conversion of l-tyrosine and oxidation of l-DOPA to dopaquinone. We evaluated the skin pigmentation inhibitor effects with both in vitro and in vivo systems to find skin-whitening agents without cytotoxic concerns. First, linderanolide B and subamolide A were isolated from the stems of Cinnamomum subavenium and exhibited mushroom tyrosinase inhibition. Then, these two herbal compounds were proved to have good pigmentation inhibitory abilities at low doses and demonstrated free cytotoxicities to normal human skin cells and zebrafish system. With molecular docking, in a virtual model of human tyrosinase, linderanolide B and subamolide A displayed meta(l) -coordinating interactions with Cu(2+) ions. The results obtained from biological assays showed that linderanolide B and subamolide A possessed anti-tyrosinase properties, which exhibited potential for application in medical cosmetology.
Collapse
Affiliation(s)
- Hui-Min Wang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.
| | | | | |
Collapse
|
16
|
Bloethner S, Mould A, Stark M, Hayward NK. Identification of ARHGEF17, DENND2D, FGFR3, and RB1 mutations in melanoma by inhibition of nonsense-mediated mRNA decay. Genes Chromosomes Cancer 2008; 47:1076-85. [PMID: 18677770 DOI: 10.1002/gcc.20598] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene identification by nonsense-mediated mRNA decay inhibition (GINI) has proven to be a strategy for genome-wide discovery of genes containing inactivating mutations in colon and prostate cancers. Here, we present the first study of inhibition of the nonsense-mediated mRNA decay (NMD) pathway in melanoma. We used a combination of emetine and actinomycin D treatment to stabilize mRNAs containing premature termination codons (PTCs), followed by microarray analysis and sequencing to identify novel tumor suppressor genes (TSGs) in a panel of 12 melanoma cell lines. Stringent analysis of the array data was used to select 35 candidate genes for sequencing. Of these, 4 (11%) were found to carry PTCs, including ARHGEF17, DENND2D, FGFR3, and RB1. While RB1 mutations have previously been described in melanoma, the other three genes represent potentially novel melanoma; TSGs. ARHGEF17 showed a G1865A mutation leading to W622X in a cell line derived from a mucosal melanoma; in RB1 a C1411T base change resulting in Q471X was discovered in a cell line derived from an acral melanoma; and the FGFR3 and DENND2D genes had intronic insertions leading to PTCs in cell lines derived from superficially spreading melanomas. We conclude that although the false positive rate is high, most likely due to the lack of DNA mismatch repair gene defects, the GINI protocol is one approach to discover novel TSGs in melanoma.
Collapse
Affiliation(s)
- Sandra Bloethner
- Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4029, Australia
| | | | | | | |
Collapse
|
17
|
Nawarak J, Huang-Liu R, Kao SH, Liao HH, Sinchaikul S, Chen ST, Cheng SL. Proteomics analysis of kojic acid treated A375 human malignant melanoma cells. J Proteome Res 2008; 7:3737-46. [PMID: 18630942 DOI: 10.1021/pr7008737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although the toxicogenomics of kojic acid treated A375 human malignant melanoma cells has been elucidated, the proteomics of cellular response is still poorly understood. We performed proteomic analysis to investigate the anticancer effect of kojic acid on protein expression profile in A375 cells. A375 cells were treated with kojic acid at 8 microg/mL for 24, 48, and 72 h. With the use of 2-D PAGE and MALDI-Q-TOF MS and MS/MS analyses, proteomic profiles of A375 cells between control and kojic acid treatment were compared, and 30 differentially expressed proteins, containing 2 up-regulated proteins and 28 down-regulated proteins, were identified. Among these proteins, 17 isoforms of 5 identical proteins were observed and 11 chaperone proteins showed the high proportion of protein spots with 36.7% of total proteins. Bioinformatic tools were used to search for protein function and prediction of protein interaction. Sixteen differentially expressed proteins exhibited interaction network linked to the downstream regulations of p53 tumor suppressor and cell apoptosis, which may lead to suppress the melanogenesis and tumorigenesis of kojic acid treated A375 cells. In addition, GRP75, VIME and 2AAA were validated by Western blot analysis, whereas GRP75, 2AAA, HS90B, ENPL and KPYM were validated by RT-PCR. Therefore, these proteins play the important roles in cancer progression and may be potential biomarkers that are useful for diagnostic and therapeutic applications of malignant melanoma cancer.
Collapse
Affiliation(s)
- Jiraporn Nawarak
- Institute of Biological Chemistry and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
18
|
Hoek KS. DNA microarray analyses of melanoma gene expression: a decade in the mines. ACTA ACUST UNITED AC 2007; 20:466-84. [DOI: 10.1111/j.1600-0749.2007.00412.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Cheng SL, Huang-Liu R, Sheu JN, Chen ST, Sinchaikul S, Tsay GJ. Toxicogenomics of A375 human malignant melanoma cells. Pharmacogenomics 2007; 8:1017-36. [PMID: 17716235 DOI: 10.2217/14622416.8.8.1017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Toxicogenomics applications are increasingly applied to the evaluation of preclinical drug safety, and to explain toxicities associated with compounds at the mechanism level. In this review, we aim to describe the application of toxicogenomics tools for studying the genotoxic effect of active compounds on the gene-expression profile of A375 human malignant melanoma cells, through the other molecular functions of target genes, regulatory pathways and mechanisms of malignant melanomas. It also includes the current systems biology approaches, which are very useful for analyzing the biological system and understanding the entire mechanisms of malignant melanomas. We believe that this review would be very potent and useful for studying the toxicogenomics of A375 melanoma cells, and for further diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Sun-Long Cheng
- Chung Shan Medical University, Department of Plastic Surgery, Chung Shan Medical University Hospital, Taichung, 40242, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Cheng SL, Liu RH, Sheu JN, Chen ST, Sinchaikul S, Tsay GJ. Toxicogenomics of A375 human malignant melanoma cells treated with arbutin. J Biomed Sci 2006; 14:87-105. [PMID: 17103032 DOI: 10.1007/s11373-006-9130-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 10/10/2006] [Indexed: 12/29/2022] Open
Abstract
Although arbutin is a natural product and widely used as an ingredient in skin care products, its effect on the gene expression level of human skin with malignant melanoma cells is rarely reported. We aim to investigate the genotoxic effect of arbutin on the differential gene expression profiling in A375 human malignant melanoma cells through its effect on tumorigenesis and related side-effect. The DNA microarray analysis provided the differential gene expression pattern of arbutin-treated A375 cells with the significant changes of 324 differentially expressed genes, containing 88 up-regulated genes and 236 down-regulated genes. The gene ontology of differentially expressed genes was classified as belonging to cellular component, molecular function and biological process. In addition, four down-regulated genes of AKT1, CLECSF7, FGFR3, and LRP6 served as candidate genes and correlated to suppress the biological processes in the cell cycle of cancer progression and in the downstream signaling pathways of malignancy of melanocytic tumorigenesis.
Collapse
Affiliation(s)
- Sun-Long Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|