1
|
Liu J, Huang T, Xu Z, Mao Y, Soteyome T, Liu G, Qu C, Yuan L, Ma Q, Zhou F, Seneviratne G. Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics. Biofilm 2023; 6:100156. [PMID: 37779859 PMCID: PMC10539642 DOI: 10.1016/j.bioflm.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen, a potential "Super-bug" and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at investigating the phenotypical and global gene expression changes on biofilm formation of a clinical S. aureus isolate treated under different types of antibiotics. Firstly, an isolate Guangzhou-SAU749 was selected from a large sale of previously identified S. aureus isolates, which exhibited weak biofilm formation in terms of biomass and viability. Secondly, 9 commonly prescribed antibiotics for S. aureus infections treatment, together with 10 concentrations ranging from 1/128 to 4 minimum inhibitory concentration (MIC) with 2-fold serial dilution, were used as different antibiotic stress conditions. Then, biofilm formation of S. aureus Guangzhou-SAU749 at different stages including 8 h, 16 h, 24 h, and 48 h, was tested by crystal violet and MTS assays. Thirdly, the whole genome of S. aureus Guangzhou-SAU749 was investigated by genome sequencing on PacBio platform. Fourthly, since enhancement of biofilm formation occurred when treated with 1/2 MIC tetracycline (TCY) and 1/4 MIC streptomycin (STR) since 5 h, the relevant biofilm samples were selected and subjected to RNA-seq and bioinformatics analysis. Last, expression of two component system (TCS) and biofilm associated genes in 4 h, 8 h, 16 h, 24 h, and 48 h sub-MIC TCY and STR treated biofilm samples were performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Although most antibiotics lowered the biomass and cell viability of Guangzhou-SAU749 biofilm at concentrations higher than MIC, certain antibiotics including TCY and STR promoted biofilm formation at sub-MICs. Additionally, upon genome sequencing, RNA-seq and RT-qPCR on biofilm samples treated with sub-MIC of TCY and STR at key time points, genes lytR, arlR, hssR, tagA, clfB, atlA and cidA related to TCS and biofilm formation were identified to contribute to the enhanced biofilm formation, providing a theoretical basis for further controlling on S. aureus biofilm formation.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Gongliang Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fang Zhou
- The First Affiliated Hospital, Sun Yan-Sen University, Guangzhou, 510080, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| |
Collapse
|
2
|
Malczak I, Gajda A. Interactions of naturally occurring compounds with antimicrobials. J Pharm Anal 2023; 13:1452-1470. [PMID: 38223447 PMCID: PMC10785267 DOI: 10.1016/j.jpha.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 01/16/2024] Open
Abstract
Antibiotics are among the most often used medications in human healthcare and agriculture. Overusing these substances can lead to complications such as increasing antibiotic resistance in bacteria or a toxic effect when administering large amounts. To solve these problems, new solutions in antibacterial therapy are needed. The use of natural products in medicine has been known for centuries. Some of them have antibacterial activity, hence the idea to combine their activity with commercial antibiotics to reduce the latter's use. This review presents collected information on natural compounds (terpenes, alkaloids, flavonoids, tannins, sulfoxides, and mycotoxins), of which various drug interactions have been observed. Many of the indicated compounds show synergistic or additive interactions with antibiotics, which suggests their potential for use in antibacterial therapy, reducing the toxicity of the antibiotics used and the risk of further development of bacterial resistance. Unfortunately, there are also compounds which interact antagonistically, potentially hindering the therapy of bacterial infection. Depending on its mechanism of action, each compound can behave differently in combination with different antibiotics and when acting against various bacterial strains.
Collapse
Affiliation(s)
- Izabela Malczak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Partyzantów 57, 24-100, Poland
| |
Collapse
|
3
|
Lu X, Luo C, Wu J, Deng Y, Mu X, Zhang T, Yang X, Liu Q, Li Z, Tang S, Hu Y, Du Q, Xu J, Xie R. Ion channels and transporters regulate nutrient absorption in health and disease. J Cell Mol Med 2023; 27:2631-2642. [PMID: 37638698 PMCID: PMC10494301 DOI: 10.1111/jcmm.17853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023] Open
Abstract
Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.
Collapse
Affiliation(s)
- Xianmin Lu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Chen Luo
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jiangbo Wu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ya Deng
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xingyi Mu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Ting Zhang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Xiaoxu Yang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qi Liu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Zhuo Li
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Siqi Tang
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Yanxia Hu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Qian Du
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Jingyu Xu
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| | - Rui Xie
- Department of GastroenterologyDigestive Disease Hospital, Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative InnovAffiliated Hospital of Zunyi Medical Universityation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
4
|
Füchtbauer S, Mousavi S, Bereswill S, Heimesaat MM. Antibacterial properties of capsaicin and its derivatives and their potential to fight antibiotic resistance - A literature survey. Eur J Microbiol Immunol (Bp) 2021; 11:10-17. [PMID: 33764892 PMCID: PMC8042654 DOI: 10.1556/1886.2021.00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is endangering public health globally and gives reason for constant fear of virtually intractable bacterial infections. Given a limitation of novel antibiotic classes brought to market in perspective, it is indispensable to explore novel, antibiotics-independent ways to fight bacterial infections. In consequence, the antibacterial properties of natural compounds have gained increasing attention in pharmacological sciences. We here performed a literature survey regarding the antibacterial effects of capsaicin and its derivatives constituting natural compounds of chili peppers. The studies included revealed that the compounds under investigation exerted i.) both direct and indirect antibacterial properties in vitro depending on the applied concentrations and the bacterial strains under investigation; ii.) synergistic antibacterial effects in combination with defined antibiotics; iii.) resistance-modification via inhibition of bacterial efflux pumps; iv.) attenuation of bacterial virulence factor expression; and v.) dampening of pathogen-induced immunopathological responses. In conclusion, capsaicin and its derivatives comprise promising antimicrobial molecules which could complement or replace antibiotic treatment strategies to fight bacterial infections. However, a solid basis for subsequent clinical trials requires future investigations to explore the underlying molecular mechanisms and in particular pharmaceutical evaluations in animal infection models.
Collapse
Affiliation(s)
- Samuel Füchtbauer
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Selan L, Vrenna G, Ettorre E, Papa R, Artini M. Virulence of MRSA USA300 is enhanced by sub-inhibitory concentration of two different classes of antibiotics. J Chemother 2019; 30:384-388. [PMID: 30663546 DOI: 10.1080/1120009x.2018.1533085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 is responsible of many kinds of infections of skin and soft-tissue. Antibiotic resistance, biofilm formation and the ability to adhere and invade are virulence factors that contribute to MRSA pathogenesis. In some cases, decreased bioavailability of antibiotics in systemic circulation could result; in these conditions sub-therapeutic levels of the antibiotics may be established, exposing bacteria to sub-inhibitory concentrations. On the basis of several published scientific data it is fair to assume that all these events could induce an increase of bacterial virulence. In the present study, we investigated this process by measuring the effects of low doses of two different classes of antibiotics on some virulence features of MRSA USA300 isolate, like the ability to adhere and invade eukaryotic cells. Results obtained strongly support the importance of the respect of a correct dosage of antibiotic in therapy to escape the insurgence of more virulent phenotypes.
Collapse
Affiliation(s)
- Laura Selan
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Gianluca Vrenna
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Evaristo Ettorre
- b Division of Gerontology, Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic, and Geriatric Sciences , Sapienza University , Rome , Italy
| | - Rosanna Papa
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Marco Artini
- a Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| |
Collapse
|
6
|
Liang Q, Lv X, Cai Q, Cai Y, Zhao B, Li G. Novobiocin, a Newly Found TRPV1 Inhibitor, Attenuates the Expression of TRPV1 in Rat Intestine and Intestinal Epithelial Cell Line IEC-6. Front Pharmacol 2018; 9:1171. [PMID: 30374305 PMCID: PMC6196238 DOI: 10.3389/fphar.2018.01171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 01/26/2023] Open
Abstract
Background and Purpose: Novobiocin (NOVO), an ABC transporter inhibitor, decreases intestinal wall permeability of capsaicin (CAP), an ABC transporter substrate. However, the mechanism of this effect is not consistent with the action of NOVO as an ABC transporter inhibitor. We previously found that CAP can also be transported via TRPV1, which was site-specific in the permeability of CAP across the intestine. We explored the regulation by NOVO of TRPV1 in the present study. Methods: Rats and transfected IEC-6 cells were used as the models to assess intestinal permeability and expression of TRPV1. Ussing chamber and intracellular accumulation were used to evaluate the influence of NOVO on the transport of CAP in vitro. The expression of TRPV1 was detected after administration of NOVO by qRT-PCR, western blot and immunofluorescent imaging. In addition, MTT and lactate dehydrogenase (LDH) were used to evaluate the cytotoxicity of NOVO in both rat and cell models. Finally, the effect of NOVO on the absorption of CAP in vivo was studied by LC-MS/MS. Results: In vitro data showed that there existed a dose-dependent relationship in the range of concentration between 5 and 50 μM, and even 5 μM NOVO could decrease intestinal permeability of CAP across the intestine. Meanwhile, cytosolic accumulation of CAP decreased when NOVO was used simultaneously or 24 h in advance. NOVO exhibited an inhibition level similar to that of ruthenium red (RR) or SB-705498, a TRPV1-specific inhibitor. NOVO down-regulated TRPV1 expression in the intestine and in transfected cells in a concentration-dependent fashion, hinting that its inhibition of the permeability of CAP is due to its inhibition of TRPV1 expression. Immunofluorescent imaging data showed that the fluorescence intensity of TRPV1 was reduced after pre-treatment with NOVO and SB-705498. In vivo data further demonstrated that oral co-administration of NOVO decreased Cmax and AUC of CAP in dosage-dependent ways, consistent with its role as a TRPV1 inhibitor. Conclusion: NOVO could be a potential TRPV1 inhibitor by attenuating the expression of TRPV1 and may be used to attenuate permeability of TRPV1 substrates.
Collapse
Affiliation(s)
- Qianying Liang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueli Lv
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Cai
- General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Yun Cai
- Department of Pharmacy, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Boxin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofeng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Rational Medication Evaluation and Drug Delivery Technology Lab, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Duan L, Yan Y, Sun Y, Zhao B, Hu W, Li G. Contribution of TRPV1 and multidrug resistance proteins in the permeation of capsaicin across different intestinal regions. Int J Pharm 2013; 445:134-40. [PMID: 23402980 DOI: 10.1016/j.ijpharm.2013.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/17/2013] [Accepted: 02/03/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The aim of the study was to observe the characteristic of permeation of capsaicin across jejunum, ileum and colon in the rat, and to investigate the role of transient receptor potential cation channel (TRPV1). The interaction of capsaicin with P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP) was also investigated. METHOD The transport of capsaicin across three intestinal segments in rats was investigated using Ussing-chamber System. RESULTS The permeability of capsaicin across the colonic ileac or jejunal membrane was significantly different in M-S direction (11.679 ± 2.001, 5.336 ± 1.248, 1.395 ± 0.673, ×10(-6)cm/s). TRPV1 non-competitive antagonist ruthenium red significantly decreased the permeability of capsaicin in M-S direction across colonic membrane. The permeability of capsaicin could also be inhibited unconventionally by the BCRP inhibitor novobiocin in M-S direction across colon. However, either the P-gp inhibitor verapamil or the MRP2 inhibitor probenecid did not affect the transport of capsaicin in all three segments. CONCLUSION We firstly proved that the permeability of capsaicin across colon was significantly higher than that across jejunum or ileum. Furthermore, TRPV1 might mediate the transport of capsaicin across the intestinal membrane. Therefore, the colon-specific highest permeation of capsaicin could be the consequence of the colon-specific distribution of TRPV1. For another, there may be another transport pathway mediating the permeation of capsaicin in M-S direction, which could be inhibited by novobiocin.
Collapse
Affiliation(s)
- Lian Duan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | |
Collapse
|
8
|
Haddadin RNS, Saleh S, Al-Adham ISI, Buultjens TEJ, Collier PJ. The effect of subminimal inhibitory concentrations of antibiotics on virulence factors expressed by Staphylococcus aureus biofilms. J Appl Microbiol 2009; 108:1281-91. [PMID: 19778348 DOI: 10.1111/j.1365-2672.2009.04529.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The effect of subminimal inhibitory concentrations (sub-MICs) of cefalexin, ciprofloxacin and roxithromycin was investigated on some virulence factors [e.g. coagulase, Toxic Shock Syndrome Toxin 1 (TSST-1) and biofilm formation] expressed by Staphylococcus aureus biofilms. METHODS AND RESULTS Biofilms were grown with and without the presence of 1/16 MIC of antibiotics on Sorbarod filters. Eluate supernatants were collected, and coagulase and TSST-1 production were evaluated. Coagulase production was reduced in eluates exposed to roxithromycin when compared to control, while TSST-1 production was reduced in biofilms exposed to cefalexin and to a lesser extent, ciprofloxacin. In addition, the ability of Staph. aureus to produce biofilm in microtitre plates in the presence of sub-MIC antibiotics indicated that cefalexin induced biofilm formation at a wide range of sub-MICs. TSST-1 produced from the challenged and control biofilms was purified, and its proliferative activity was studied on single cell suspension of mouse splenocytes using MTS/PMS assay. No significant difference in the activity between the treated toxin and the control has been observed. CONCLUSIONS Antibiotics at sub-MIC levels interfere with bacterial biofilm virulence expression depending on the type and concentration of antibiotic used. SIGNIFICANCE AND IMPACT OF THE STUDY The establishment of sub-MICs of antibiotics in clinical situations may result in altered virulence states in pathogenic bacteria.
Collapse
Affiliation(s)
- R N S Haddadin
- School of Contemporary Sciences, University of Abertay Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
9
|
Gilbert ER, Wong EA, Webb KE. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J Anim Sci 2008; 86:2135-55. [PMID: 18441086 DOI: 10.2527/jas.2007-0826] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the last 50 yr, the study of intestinal peptide transport has rapidly evolved into a field with exciting nutritional and biomedical applications. In this review, we describe from a historical and current perspective intestinal peptide transport, the importance of peptides to whole-body nutrition, and the cloning and characterization of the intestinal peptide transporter, PepT1. We focus on the nutritional significance of peptide transport and relate these findings to livestock and poultry. Amino acids are transported into the enterocyte as free AA by a variety of AA transporters that vary in substrate specificity or as di- and tripeptides by the peptide transporter, PepT1. Expression of PepT1 is largely restricted to the small intestine in most species; however, in ruminants, peptide transport and activity is observed in the rumen and omasum. The extent to which peptides are absorbed and utilized is still unclear. In ruminants, peptides make a contribution to the portal-drained visceral flux of total AA and are detected in circulating plasma. Peptides can be utilized by the mammary gland for milk protein synthesis and by a variety of other tissues. We discuss the factors known to regulate expression of PepT1 including development, diet, hormones, diurnal rhythm, and disease. Expression of PepT1 is detected during embryological stages in both birds and mammals and increases with age, a strategic event that allows for the immediate uptake of nutrients after hatch or birth. Both increasing levels of protein in the diet and dietary protein deficiencies are found to upregulate the peptide transporter. We also include in this review a discussion of the use of dietary peptides and potential alternate routes of nutrient delivery to the cell. Our goal is to impart to the reader the nutritional implications of peptide transport and dietary peptides and share discoveries that shed light on various biological processes, including rapid establishment of intestinal function in early neonates and maintenance of intestinal function during fasting, starvation, and disease states.
Collapse
Affiliation(s)
- E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061-0306, USA
| | | | | |
Collapse
|
10
|
Stearns AT, Balakrishnan A, Rounds J, Rhoads DB, Ashley SW, Tavakkolizadeh A. Capsaicin-sensitive vagal afferents modulate posttranscriptional regulation of the rat Na+/glucose cotransporter SGLT1. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1078-83. [PMID: 18308853 DOI: 10.1152/ajpgi.00591.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION the intestinal Na(+)/glucose cotransporter (SGLT1) displays rapid anticipatory diurnal rhythms in mRNA and protein expression. The vagus nerve has been implicated in the entrainment of some transporters. We aimed to clarify the influence of the vagus nerve on the diurnal entrainment pathway for SGLT1 and examine the role of vagal afferent fibers. METHODS male Sprague-Dawley rats were randomized to three groups, total subdiaphragmatic vagotomy, selective deafferentation of the vagus with capsaicin, or sham laparotomy. Postoperatively, animals were maintained in a 12-h light-dark cycle with food access limited to night. On the ninth postoperative day, animals were euthanized to harvest jejunal mucosa at 6-h intervals starting at 10 AM. Whole cell SGLT1 protein was measured by semiquantitative densitometry of immunoblots. Sglt1 and regulatory subunit RS1 mRNA was assessed by quantitative PCR. Fluorogold tracer technique was used to confirm adequacy of the vagotomy. RESULTS the diurnal rhythm in intestinal SGLT1, with a 5.3-fold increase in Sglt1 mRNA at 4 PM, was preserved in both vagotomy and capsaicin groups. However, the rhythmicity in SGLT1 protein expression (2.3-fold peak at 10 PM; P = 0.041) was abolished following either total vagotomy or deafferentation. Lack of change in RS1 mRNA suggests this is independent of the RS1 regulatory pathway. CONCLUSION SGLT1 transcription is independent of the vagus. However, dissociation of the protein rhythm from the underlying mRNA signal by vagotomy suggests the vagus may be involved in posttranscriptional regulation of SGLT1 in an RS1 independent pathway. Disruption following afferent ablation by capsaicin suggests this limb is specifically necessary.
Collapse
Affiliation(s)
- Adam T Stearns
- Dept. of Surgery, Brigham & Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
11
|
Komori Y, Aiba T, Nakai C, Sugiyama R, Kawasaki H, Kurosaki Y. Capsaicin-induced increase of intestinal cefazolin absorption in rats. Drug Metab Pharmacokinet 2008; 22:445-9. [PMID: 18159132 DOI: 10.2133/dmpk.22.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of capsaicin on intestinal cefazolin absorption was examined by means of an in situ closed loop method in rats to clarify whether the vanilloid receptor (TRPV1) is involved in drug absorption driven by passive diffusion. In control experiments with 1 mg/mL cefazolin, the amount of cefazolin absorbed from the closed loop was 15.3+/-1.5 microg/cm in the rat jejunum. The absorption amount was increased to 22.8+/-0.9 and 23.4+/-2.4 microg/cm when capsaicin was applied with cefazolin at concentrations of 10 and 400 microM, respectively. The enhancing effect of capsaicin on cefazolin absorption was suppressed when ruthenium red, a non-selective inhibitor of transient receptor potential (TRP) cation channels, was intravenously infused into the rat during the experiment. Cefazolin accumulation in the intestinal tissue was not altered in the presence of capsaicin. Collectively, the mechanism accounting for the capsaicin-induced increase in the intestinal cefazolin absorption is probably that capsaicin associating with TRPV1 increases the intrinsic permeability of cefazolin in intestine.
Collapse
Affiliation(s)
- Yukiko Komori
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | |
Collapse
|