1
|
Yano T, Watanabe S, Kurokawa Y, Sakamoto Y, Hidaka N, Tanaka M. Pharmacological Investigation of Hypoalbuminemia on the Prolonged and Potentiated Action of Midazolam in Rats. Biol Pharm Bull 2024; 47:785-790. [PMID: 38583949 DOI: 10.1248/bpb.b23-00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Midazolam (MDZ) is clinically used for its sedative and anticonvulsant properties. However, its prolonged or potentiated effects are sometimes concerning. The main binding protein of MDZ is albumin, and reduced serum albumin levels could lead to MDZ accumulation, thereby potentiating or prolonging its effects. Previous investigations have not thoroughly examined these phenomena from a behavioral pharmacology standpoint. Consequently, this study aimed to evaluate both the prolonged and potentiated effects of MDZ, as well as the effects of serum albumin levels on the action of MDZ in low-albumin rats. Male Wistar rats were classified into control (20% protein diet), low-protein (5% protein), and non-protein groups (0% protein diet) and were fed the protein-controlled diets for 30 d to obtain low-albumin rats. The locomotor activity and muscle relaxant effects of MDZ were evaluated using the rotarod, grip strength, and open-field tests conducted 10, 60, and 120 min after MDZ administration. Serum albumin levels decreased significantly in the low-protein and non-protein diet groups compared with those in the control group. Compared with the control rats, low-albumin rats demonstrated a significantly shorter time to fall, decreased muscle strength, and a significant decrease in the distance traveled after MDZ administration in the rotarod, grip strength, and open-field tests, respectively. Decreased serum albumin levels potentiated and prolonged the effects of MDZ. Hence, serum albumin level is a critical parameter associated with MDZ administration, which should be monitored, and any side effects related to decreased albumin levels should be investigated.
Collapse
Affiliation(s)
- Takaaki Yano
- Division of Pharmacy, Ehime University Hospital
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Shinichi Watanabe
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | - Yukiro Kurokawa
- Division of Pharmacy, Ehime University Hospital
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University
| | | | | | | |
Collapse
|
2
|
Puy L, Leboullenger C, Auger F, Bordet R, Cordonnier C, Bérézowski V. Intracerebral Hemorrhage-Induced Cognitive Impairment in Rats Is Associated With Brain Atrophy, Hypometabolism, and Network Dysconnectivity. Front Neurosci 2022; 16:882996. [PMID: 35844211 PMCID: PMC9280302 DOI: 10.3389/fnins.2022.882996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms underlying intracerebral hemorrhage (ICH)-related cognitive impairment (CI) remain unclear. Long-term structural and functional changes were investigated in the brains of healthy male and female Wistar rats after experimental ICH. Following double injection of autologous blood, rats underwent short-term (onset, 3 and 7 days) and long-term (3 and 6 months) radiological assessment and behavioral tests exploring spontaneous locomotion, anxiety-like behavior and working memory, spatial recognition memory and visual recognition memory. Volumetric and metabolic changes in brain areas were examined by 7Tesla-MRI and [18F] FDG-PET, respectively. Brain connectomic disorders and maladaptive processes were seeked through brain metabolic connectivity analysis and atrophy-related network analysis. From an initial hematoma mean volume of 23.35 ± 9.50 mm3, we found early spontaneous locomotor recovery and significant spontaneous blood resorption (≈ 40% of the initial lesion) from days 0 to 7. After 3 and 6 months, ICH rats exhibited CI in several domains as compared to the sham group (working memory: 58.1 ± 1.2 vs. 70.7 ± 1.2%, p < 0.001; spatial recognition memory: 48.7 ± 1.9 vs. 64 ± 1.8%, p < 0.001 and visual recognition memory: 0.14 ± 0.05 vs. 0.33 ± 0.04, p = 0.013, in female only). Rats that experienced ICH had remote and concomitant cerebral atrophy and hypometabolism of ipsilateral striatum, thalamus, limbic system and cortical areas (temporal and parietal lobes). Interestingly, both structural and metabolic deterioration was found in the limbic system connected to the affected site, but remotely from the initial insult. On the other hand, increased activity and functional connectivity occurred in the contralateral hemisphere. These connectomics results showed that both maladaptative and compensation processes coexist in the rat brain following ICH, even at young age and in a disease-free setting. These radiological findings deepen our understanding of ICH-related CI and may serve as biomarkers in the view of future therapeutic intervention.
Collapse
Affiliation(s)
- Laurent Puy
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
| | - Clémence Leboullenger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Florent Auger
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Régis Bordet
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
- *Correspondence: Charlotte Cordonnier,
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 – LilNCog - Lille Neuroscience and Cognition, Lille, France
- UArtois, Lens, France
- Vincent Bérézowski,
| |
Collapse
|
3
|
Yu J, Ren L, Min S, Lv F, Luo J, Li P, Zhang Y. Inhibition of CB1 receptor alleviates electroconvulsive shock-induced memory impairment by regulating hippocampal synaptic plasticity in depressive rats. Psychiatry Res 2021; 300:113917. [PMID: 33848965 DOI: 10.1016/j.psychres.2021.113917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for depression, but it can cause cognitive deficit. Unfortunately, effective preventive measures are still lacking. The endocannabinoid system is thought to play a key role in regulation of cognitive process. Whether the endocannabinoid system is involved in the learning and memory impairment caused by ECS remain unclear. In this work, we first found that cannabinoid receptor type 1 (CB1R) and 2-arachidonoylglycerol (2-AG) were strongly expressed in hippocampus by electroconvulsive shock (ECS) in a rat depression model established by chronic mild stress (CMS). Pharmacological inhibition of CB1R using AM251 in vivo resulted in a pronounced relief in ECS-induced spatial learning and memory impairment as well as in a marked reversal of impaired hippocampal long-term potentiation (LTP), and reduced synapse-related proteins expression. Furthermore, results of sucrose preference test (SPT) and open-field test (OFT) showed that AM251 had no significant impact on the therapeutic effects of ECS on pleasure and psychomotor activity. Taken together, we identified that CB1R is involved in the ECS-induced spatial learning and memory impairment and Inhibition of CB1R facilitates the recovery of memory impairment and hippocampal synaptic plasticity, without interfering with the therapeutic effects of ECS in depressed rats.
Collapse
Affiliation(s)
- Jian Yu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Ren
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Feng Lv
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jie Luo
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ping Li
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
García-Cabrerizo R, Ledesma-Corvi S, Bis-Humbert C, García-Fuster MJ. Sex differences in the antidepressant-like potential of repeated electroconvulsive seizures in adolescent and adult rats: Regulation of the early stages of hippocampal neurogenesis. Eur Neuropsychopharmacol 2020; 41:132-145. [PMID: 33160794 DOI: 10.1016/j.euroneuro.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
Age and sex are critical factors for the diagnosis and treatment of major depression, since there is a well-known age-by-sex difference in the prevalence of major depression (being females the most vulnerable ones) and in antidepressant efficacy (being adolescence a less responsive period than adulthood). Although the induction of electroconvulsive seizures (ECS) is a very old technique in humans, there is not much evidence reporting sex- and age-specific aspects of this treatment. The present study evaluated the antidepressant- and neurogenic-like potential of repeated ECS across time in adolescent and adult rats (naïve or in a model of early life stress capable of mimicking a pro-depressive phenotype), while including a sex perspective. The main results demonstrated age- and sex-specific differences in the antidepressant-like potential of repeated ECS, since it worked when administered during adolescence or adulthood in male rats (although with a shorter length in adolescence), while in females rendered deleterious during adolescence and ineffective in adulthood. Yet, repeated ECS increased cell proliferation and vastly boosted young neuronal survival in a time-dependent manner for both sexes and independently of age. Moreover, pharmacological inhibition of basal cell proliferation prevented the antidepressant-like effect induced by repeated ECS in male rats, but only partially blocked the very robust increase in the initial cell markers of hippocampal neurogenesis. Overall, the present results suggest that the induction of the early phases of neurogenesis by ECS, besides having a role in mediating its antidepressant-like effect, might participate in some other neuroplastic actions, opening the path for future studies.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Present address: APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sandra Ledesma-Corvi
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Cra. de Valldemossa km 7.5, E-07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
5
|
Age and diet modify acute microhemorrhage outcome in the mouse brain. Neurobiol Aging 2020; 98:99-107. [PMID: 33259985 DOI: 10.1016/j.neurobiolaging.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
Cerebral microhemorrhages (CMHs) are considered as asymptomatic lesions, but might impair cognition in non-demented elderly individuals. The aging process includes poor vascular health, enhanced at midlife by metabolic disturbances upon high-fat diet (HFD). The onset of CMHs could thus have more serious consequences in midlife subjects with metabolic disturbances. This hypothesis was tested through the induction of multiple CMHs, using cyclodextrin nanoparticles injection, in mice at midlife (14 month old) or at a younger stage (5 month old) after 12 months or 3 months of normal diet or HFD (40% of animal fat) respectively. When induced at 14 months of age, CMHs were not larger but were more numerous (+25%) in mice on HFD compared with mice on normal diet. They slowed down the locomotor activity significantly but caused neither a change in the working memory nor a difference in the visual recognition memory decline. When induced at 5 months of age, CMHs provoked slighter locomotor and cognitive symptoms, regardless the diet. No spontaneous progression of CMHs toward larger hemorrhages was observed after onset when HFD was prolonged up to midlife. Consistently, no precipitated cognitive decline was observed. Middle-age plus time of metabolic disturbances represent enhanced risk factors for CMH outcome.
Collapse
|
6
|
Abstract
Psychiatric and cognitive disturbances are the most common comorbidities of epileptic disorders in children. The successful treatment of these comorbidities faces many challenges including their etiologically heterogonous nature. Translational neurobehavioral research in age-tailored and clinically relevant rodent seizure models offers a controlled setting to investigate emotional and cognitive behavioral disturbances, their causative factors, and potentially novel treatment interventions. In this review, we propose a conceptual framework that provides a nonsubjective approach to rodent emotional behavioral testing with a focus on the clinically relevant outcome of behavioral response adaptability. We also describe the battery of neurobehavioral tests that we tailored to seizure models with prominent amygdalo-hippocampal involvement, including testing panels for anxiety-like, exploratory, and hyperactive behaviors (the open-field and light-dark box tests), depressive-like behaviors (the forced swim test), and visuospatial navigation (Morris water maze). The review also discusses the modifications we introduced to active avoidance testing in order to simultaneously test auditory and hippocampal-dependent emotionally relevant learning and memory. When interpreting the significance and clinical relevance of the behavioral responses obtained from a given testing panel, it is important to avoid a holistic disease-based approach as a specific panel may not necessarily mirror a disease entity. The analysis of measurable behavioral responses has to be performed in the context of outcomes obtained from multiple related and complementary neurobehavioral testing panels. Behavioral testing is also complemented by mechanistic electrophysiological and molecular investigations.
Collapse
|
7
|
Pétrault O, Pétrault M, Ouk T, Bordet R, Bérézowski V, Bastide M. Visceral adiposity links cerebrovascular dysfunction to cognitive impairment in middle-aged mice. Neurobiol Dis 2019; 130:104536. [DOI: 10.1016/j.nbd.2019.104536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/07/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
|
8
|
Cognitive and behavioral effects of brief seizures in mice. Epilepsy Behav 2019; 98:249-257. [PMID: 31398689 DOI: 10.1016/j.yebeh.2019.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 11/22/2022]
Abstract
Comorbidities associated with epilepsy greatly reduce patients' quality of life. Since antiepilepsy drugs show limited success in ameliorating cognitive and behavioral symptoms, there is a need to better understand the mechanisms underlying epilepsy-related cognitive and behavioral impairments. Most prior research addressing this problem has focused on chronic epilepsy, wherein many factors can simultaneously impact cognition and behavior. The purpose of the present study was to develop a testing paradigm using mice that can provide new insight into how short-term biological changes underlying acute seizures impact cognition and behavior. In Experiment 1, naïve C57BL/6J mice were subjected to either three brief, generalized electroconvulsive seizure (ECS) or three sham treatments equally spaced over the course of 30 min. Over the next 2 h, mice were tested in a novel object recognition paradigm. Follow-up studies examined locomotor activity immediately before and after (Experiment 2), immediately after (Experiment 3), and 45 min after (Experiment 4) a set of three ECS or sham treatments. Whereas results demonstrated that there was no statistically significant difference in recognition memory acquisition between ECS and sham-treated mice, measures of anxiety-like behavior were increased and novel object interest was decreased in ECS-treated mice compared with that in sham. Interestingly, ECS also produced a delayed inhibitory effect on locomotion, decreasing open-field activity 45-min posttreatment compared to sham. We conclude that a small cluster of brief seizures can have acute, behaviorally relevant effects in mice, and that greater emphasis should be placed on events that take place before chronic epilepsy is established in order to better understand epilepsy-related cognitive and behavioral impairments. Future research would benefit from using the paradigms defined above to study the effects of individual seizures on mouse cognition and behavior.
Collapse
|
9
|
Kinjo T, Ito M, Seki T, Fukuhara T, Bolati K, Arai H, Suzuki T. Prenatal exposure to valproic acid is associated with altered neurocognitive function and neurogenesis in the dentate gyrus of male offspring rats. Brain Res 2019; 1723:146403. [PMID: 31446017 DOI: 10.1016/j.brainres.2019.146403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 01/18/2023]
Abstract
In pregnant women with epilepsy, it is imperative to balance the safety of the mother and the potential teratogenicity of anticonvulsants, which could cause impairments such as intellectual disability and cleft lip. In this study, we examined behavioral and hippocampal neurogenesis alterations in male offspring of rats exposed to valproic acid (VPA) during pregnancy. Pregnant Wistar rats received daily intraperitoneal injections of VPA (100 mg/kg/day or 200 mg/kg/day) from embryonic day 12.5 until birth. At postnatal day 29, animals received an injection of bromodeoxyuridine (BrdU). At postnatal day 30, animals underwent the open field (OF), elevated plus-maze, and Y-maze tests. After behavioral testing, animals were decapitated, and their brains were dissected for immunohistochemistry. Of the offspring of the VPA200 mothers, 66.6% showed a malformation. In the OF test, these animals showed locomotor hyperactivity. In the elevated plus-maze, offspring of VPA-treated mothers spent significantly more time in the open arms, irrespective of the treatment dose. The number of BrdU-positive cells in the dentate gyrus of the offspring of VPA-treated mothers increased significantly in a dose-dependent manner compared with the control. A significant positive correlation between spontaneous locomotor activity in the OF and BrdU-positive cell counts was observed across groups. In conclusion, VPA administration during pregnancy results in malformations and attention-deficit/hyperactivity disorder-like behavioral abnormalities in the offspring. An increase in cell proliferation in the hippocampus may underlie the behavioral changes observed. Repeated use of high doses of VPA during pregnancy may increase the risk of neurodevelopmental abnormalities dose dependently and should be carefully considered.
Collapse
Affiliation(s)
- Tomoya Kinjo
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Masanobu Ito
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 1608421, Japan.
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Kuerban Bolati
- Neuroscience Research Institute and Department of Neurobiology, Key Laboratory for Neuroscience, Ministry of Education and Ministry of Public Health, Health Science Center, Peking University, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Heii Arai
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| | - Toshihito Suzuki
- Department of Psychiatry, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 1138431, Japan.
| |
Collapse
|
10
|
Pétrault M, Ouk T, Pétrault O, Bastide M, Bordet R, Bérézowski V. Safety of oral anticoagulants on experimental brain microbleeding and cognition. Neuropharmacology 2019; 155:162-172. [PMID: 31132437 DOI: 10.1016/j.neuropharm.2019.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
Abstract
This study aims at determining the ability of clinical-based doses of four oral anticoagulants to transform the onset of a cerebral microhemorrhages (CMH) burden into a symptomatic intracerebral hemorrhage (ICH) in the healthy brain, and precipitate cognitive impairment. Wild-type mice were anticoagulated for 10 days using apixaban, rivaroxaban or dabigatran as direct oral anticoagulants (DOACs), or warfarin as vitamin K-antagonist. Meanwhile, a burden of ∼20 CMHs was induced in the Sylvian territory by intra-carotid injection of cyclodextrin nanoparticles. At bleeding onset, only warfarin provoked deadly hematoma, and dramatically increased mortality (+45%). All the DOACs enhanced CMH burden through a greater number of intermediate-sized microhemorrhages (+80% to +180%). Although silent at onset, both baseline- and anticoagulant-enhanced CMH burdens increased mortality (+11% to +58%) along the following year without statistical difference among groups, and despite cessation of anticoagulation and absence of CMH progression or transformation into ICH. All survivor mice exhibited reduction in visual recognition memory from 9 months. In the healthy brain, DOACs preserve the onset of microhemorrhages from transformation into ICH, and do not precipitate cognitive impairment despite enhancement of CMH burden. High CMH burdens should however be considered for early detection and preventive memory care apart from anticoagulation decisions.
Collapse
Affiliation(s)
- Maud Pétrault
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Thavarak Ouk
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Olivier Pétrault
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France; UArtois, F-62300, Lens, France
| | - Michèle Bastide
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Régis Bordet
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France
| | - Vincent Bérézowski
- Univ. Lille, Inserm, CHU Lille, U1171, Degenerative and Vascular Cognitive Disorders, F-59000, Lille, France; UArtois, F-62300, Lens, France.
| |
Collapse
|
11
|
Theobromine Improves Working Memory by Activating the CaMKII/CREB/BDNF Pathway in Rats. Nutrients 2019; 11:nu11040888. [PMID: 31010016 PMCID: PMC6520707 DOI: 10.3390/nu11040888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023] Open
Abstract
Theobromine (TB) is a primary methylxanthine found in cacao beans. cAMP-response element-binding protein (CREB) is a transcription factor, which is involved in different brain processes that bring about cellular changes in response to discrete sets of instructions, including the induction of brain-derived neurotropic factor (BDNF). Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been strongly implicated in the memory formation of different species as a key regulator of gene expression. Here we investigated whether TB acts on the CaMKII/CREB/BDNF pathway in a way that might improve the cognitive and learning function in rats. Male Wistar rats (5 weeks old) were divided into two groups. For 73 days, the control rats (CN rats) were fed a normal diet, while the TB-fed rats (TB rats) received the same food, but with a 0.05% TB supplement. To assess the effects of TB on cognitive and learning ability in rats: The radial arm maze task, novel object recognition test, and Y-maze test were used. Then, the brain was removed and the medial prefrontal cortex (mPFC) was isolated for Western Blot, real-time PCR and enzyme-linked immunosorbent assay. Phosphorylated CaMKII (p-CaMKII), phosphorylated CREB (p-CREB), and BDNF level in the mPFC were measured. In all the behavior tests, working memory seemed to be improved by TB ingestion. In addition, p-CaMKII and p-CREB levels were significantly elevated in the mPFC of TB rats in comparison to those of CN rats. We also found that cortical BDNF protein and mRNA levels in TB rats were significantly greater than those in CN rats. These results suggest that orally supplemented TB upregulates the CaMKII/CREB/BDNF pathway in the mPFC, which may then improve working memory in rats.
Collapse
|
12
|
Basnet RM, Zizioli D, Taweedet S, Finazzi D, Memo M. Zebrafish Larvae as a Behavioral Model in Neuropharmacology. Biomedicines 2019; 7:biomedicines7010023. [PMID: 30917585 PMCID: PMC6465999 DOI: 10.3390/biomedicines7010023] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Zebrafish larvae show a clear and distinct pattern of swimming in response to light and dark conditions, following the development of a swim bladder at 4 days post fertilization. This swimming behavior is increasingly employed in the screening of neuroactive drugs. The recent emergence of high-throughput techniques for the automatic tracking of zebrafish larvae has further allowed an objective and efficient way of finding subtle behavioral changes that could go unnoticed during manual observations. This review highlights the use of zebrafish larvae as a high-throughput behavioral model for the screening of neuroactive compounds. We describe, in brief, the behavior repertoire of zebrafish larvae. Then, we focus on the utilization of light-dark locomotion test in identifying and screening of neuroactive compounds.
Collapse
Affiliation(s)
- Ram Manohar Basnet
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Somrat Taweedet
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Dario Finazzi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
- Clinical Chemistry Laboratory, ASST-Spedali Civili di Brescia, 25123 Brescia, Italy.
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
13
|
Delattre C, Bournonville C, Auger F, Lopes R, Delmaire C, Henon H, Mendyk AM, Bombois S, Devedjian JC, Leys D, Cordonnier C, Bordet R, Bastide M. Hippocampal Deformations and Entorhinal Cortex Atrophy as an Anatomical Signature of Long-Term Cognitive Impairment: from the MCAO Rat Model to the Stroke Patient. Transl Stroke Res 2017; 9:294-305. [PMID: 29034421 DOI: 10.1007/s12975-017-0576-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022]
Abstract
Stroke patients have an elevated risk of developing long-term cognitive disorders or dementia. The latter is often associated with atrophy of the medial temporal lobe. However, it is not clear whether hippocampal and entorhinal cortex atrophy is the sole predictor of long-term post-stroke dementia. We hypothesized that hippocampal deformation (rather than atrophy) is a predictive marker of long-term post-stroke dementia on a rat model and tested this hypothesis in a prospective cohort of stroke patients.Male Wistar rats were subjected to transient middle cerebral artery occlusion and assessed 6 months later. Ninety initially dementia-free patients having suffered a first-ever ischemic stroke were prospectively included in a clinical study. In the rat model, significant impairments in hippocampus-dependent memories were observed. MRI studies did not reveal significant atrophy of the hippocampus volume, but significant deformations were indeed observed-particularly on the ipsilateral side. There, the neuronal surface area was significantly lower in ischemic rats and was associated with a lower tissue density and a markedly thinner entorhinal cortex. At 6 months post-stroke, 49 of the 90 patients displayed cognitive impairment (males 55.10%). Shape analysis revealed marked deformations of their left hippocampus, a significantly lower entorhinal cortex surface area, and a wider rhinal sulcus but no hippocampal atrophy. Hence, hippocampal deformations and entorhinal cortex atrophy were associated with long-term impaired cognitive abilities in a stroke rat model and in stroke patients. When combined with existing biomarkers, these markers might constitute sensitive new tools for the early prediction of post-stroke dementia.
Collapse
Affiliation(s)
- C Delattre
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - C Bournonville
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - F Auger
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - R Lopes
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - C Delmaire
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - H Henon
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - A M Mendyk
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - S Bombois
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - J C Devedjian
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - D Leys
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | - C Cordonnier
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France
| | | | - M Bastide
- U1171 - Degenerative & Vascular Cognitive Disorders, Université Lille, INSERM, CHU Lille, Université du Littoral Côte d'Opale, 59000, Lille, France.
- U1171 - Degenerative & Vascular Cognitive Disorders, Faculté de Médecine, Université Lille, INSERM, CHU Lille, 1 place de Verdun, 59045, Lille cedex, France.
| |
Collapse
|
14
|
Angelica tenuissima Nakai Ameliorates Cognitive Impairment and Promotes Neurogenesis in Mouse Model of Alzheimer’s Disease. Chin J Integr Med 2017; 24:378-384. [DOI: 10.1007/s11655-017-2812-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Indexed: 12/28/2022]
|
15
|
Liu X, Lin J, Zhang Y, Peng X, Guo N, Li Q. Effects of diphenylhydantoin on locomotion and thigmotaxis of larval zebrafish. Neurotoxicol Teratol 2016; 53:41-7. [DOI: 10.1016/j.ntt.2015.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
|
16
|
Henningsen K, Woldbye DPD, Wiborg O. Electroconvulsive stimulation reverses anhedonia and cognitive impairments in rats exposed to chronic mild stress. Eur Neuropsychopharmacol 2013; 23:1789-94. [PMID: 23597878 DOI: 10.1016/j.euroneuro.2013.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 01/13/2023]
Abstract
Electroconvulsive therapy remains the most effective treatment for depression including a fast onset of action. However, this therapeutic approach suffers from some potential drawbacks. In the acute phase this includes amnesia. Electroconvulsive stimulation (ECS) has previously been shown to reverse a depression-like state in the chronic mild stress model of depression (CMS), but the effect of ECS on cognition has not previously been investigated. In this study the CMS model was used to induce a depressive-like condition in rats. The study was designed to investigate the acute effect of ECS treatment on working memory and the chronic effect of repeated ECS treatments on depression-like behavior and working memory. The results indicated that, in the acute phase, ECS treatment induced a working memory deficit in healthy controls unexposed to stress, while repeated treatments reversed stress-induced decline in working memory, as well as recovering rats submitted to the CMS paradigm from the anhedonic-like state. Like in the clinical setting, a single ECS exposure was ineffective in inducing remission from a depression-like state.
Collapse
Affiliation(s)
- K Henningsen
- Centre for Psychiatric Research, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
17
|
Segi-Nishida E, Sukeno M, Imoto Y, Kira T, Sakaida M, Tsuchiya S, Sugimoto Y, Okuno Y. Electroconvulsive seizures activate anorexigenic signals in the ventromedial nuclei of the hypothalamus. Neuropharmacology 2013; 71:164-73. [PMID: 23603200 DOI: 10.1016/j.neuropharm.2013.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 01/16/2023]
Abstract
The ventromedial nucleus of the hypothalamus (VMH) plays an important role in feeding and energy homeostasis. Electroconvulsive seizure (ECS) therapy is highly effective in the treatment of several psychiatric diseases, including depression, but may also have beneficial effects in other neurological diseases. Although it has been reported that the neurons of the VMH are strongly activated by ECS stimulation, the specific effects of ECS in this hypothalamic subnucleus remain unknown. To address this issue, we investigated the changes in gene expression in microdissected-VMH samples in response to ECS in mice, and examined the behavioral effects of ECS on feeding behavior. ECS significantly induced the expression of immediate-early genes such as Fos, Fosb, and Jun, as well as Bdnf, Adcyap1, Hrh1, and Crhr2 in the VMH. Given that signals of these gene products are suggested to have anorexigenic roles in the VMH, we also examined the effect of ECS on food intake and body weight. Repeated ECS had a suppressive effect on food intake and body weight gain under both regular and high-fat diet conditions. Furthermore, gold-thioglucose-induced hypothalamic lesions, including the VMH and the arcuate nucleus, abolished the anorexigenic effects of ECS, indicating the requirement for the activation of the hypothalamus. Our data show an effect of ECS on increased expression of anorexigenic factors in the VMH, and suggest a role in the regulation of energy homeostasis by ECS.
Collapse
Affiliation(s)
- Eri Segi-Nishida
- Department of Systems Biosciences for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Involvement of α4β2 nicotinic acetylcholine receptors in working memory impairment induced by repeated electroconvulsive seizures in rats. Epilepsy Res 2013; 104:181-5. [DOI: 10.1016/j.eplepsyres.2012.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 09/06/2012] [Accepted: 09/26/2012] [Indexed: 11/18/2022]
|
19
|
Nakamura K, Ito M, Liu Y, Seki T, Suzuki T, Arai H. Effects of single and repeated electroconvulsive stimulation on hippocampal cell proliferation and spontaneous behaviors in the rat. Brain Res 2013; 1491:88-97. [DOI: 10.1016/j.brainres.2012.10.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/31/2022]
|
20
|
Takechi K, Suemaru K, Kawasaki H, Araki H. [Impaired memory following repeated pentylenetetrazol treatments in kindled mice]. YAKUGAKU ZASSHI 2012; 132:179-82. [PMID: 22293696 DOI: 10.1248/yakushi.132.179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epilepsy is characterized by recurrent seizures, which are caused by excessive discharges from cerebral neurons. Currently, antiepileptic drugs that possess sodium channel blocking activities and also mediate GABA-ergic systems are primarily used to prevent epileptic seizure. However, approximately 40% of patients with epilepsy suffer from interictal psychiatric comorbidities in clinical practice. Furthermore, it is unclear whether epilepsy is associated with psychic function. The aim of the present study was to clarify the effects of kindling-induced epileptic seizures on psychic functioning using behavioral pharmacological tests. Pentylenetetrazol (PTZ)-kindled mice demonstrated no significant differences in locomotor activity and muscle relaxation compared with naïve mice. PTZ-kindled mice also demonstrated cognitive impairment in the objective location test, but no significant effects of PTZ-kindling were observed in the Y-maze test. These findings suggested that PTZ-kindling impairs reference memory, but not working memory. These results suggest that, with respect to their psychic functioning, PTZ-kindled mice have specific characteristics.
Collapse
Affiliation(s)
- Kenshi Takechi
- Department of Clinical Pharmacology and Pharmacy, Neuroscience, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | |
Collapse
|
21
|
Park HG, Kim SH, Kim HS, Ahn YM, Kang UG, Kim YS. Repeated electroconvulsive seizure treatment in rats reduces inducibility of early growth response genes and hyperactivity in response to cocaine administration. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1014-21. [PMID: 21334415 DOI: 10.1016/j.pnpbp.2011.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 12/27/2022]
Abstract
Regulated expression of immediate early genes (IEGs) in the brain reflects neuronal activity in response to various stimuli and recruits specific gene programs involved in long-term neuronal modification and behavioral alterations. Repeated electroconvulsive seizure (ECS) treatment reduces the expression level of several IEGs, such as c-fos, which play important roles in psychostimulant-induced behavioral changes. In this study, we investigated the effects of repeated ECS treatment on the basal expression level of IEGs and its effects on cocaine-induced activation of IEGs and locomotor activity in rats. Repeated ECS treatment for 10days (E10×) reduced Egr1, Egr2, Egr3, and c-fos mRNA and protein levels in the rat frontal cortex at 24h after the last ECS treatment, and these changes were evident in the neuronal cells of the prefrontal cortex. In particular, downregulation of Egr1 and c-fos was evident until 5days after the last ECS treatment. Moreover, E10× pretreatment attenuated the cocaine-induced increase in Egr1, Egr2, and c-fos expression in the rat frontal cortex, whereas phosphorylation of ERK1/2, one of the representative upstream activators of these genes, increased significantly following cocaine treatment. Additionally, E10× pretreatment attenuated the increase in locomotor activity in response to a cocaine injection. In conclusion, repeated ECS treatment reduced the expression and inducibility of Egrs and c-fos, which could attenuate the response of the brain to psychostimulants.
Collapse
Affiliation(s)
- Hong Geun Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Ito M, Seki T, Liu J, Nakamura K, Namba T, Matsubara Y, Suzuki T, Arai H. Effects of repeated electroconvulsive seizure on cell proliferation in the rat hippocampus. Synapse 2011; 64:814-21. [PMID: 20340175 DOI: 10.1002/syn.20796] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electroconvulsive therapy (ECT) is known as a successful treatment for severe depression. Despite great efforts, the biological mechanisms underlying the beneficial effects of ECT remain largely unclear. In this study, animals received a single, 10, or 20 applications of electroconvulsive seizure (ECS), and then cell proliferation and apoptosis were investigated in the subgranular zone (SGZ) of the dentate gyrus. We analyzed whether a series of ECSs could induce changes in the dentate gyrus in a dose-response fashion. A single-ECS seizure significantly increased cell proliferation in the SGZ by ∼2.3-fold compared to sham treatment. After 10 ECSs, a significant increase in cell proliferation was observed in the SGZ by ∼2.4-fold compared to sham treatment. Moreover, 10 ECSs induced a significant increase in cell proliferation by 1.3-fold compared to a single-ECS group. However, cell proliferation did not differ between the group with 20 ECSs and sham group. In addition, a significant increase in the number of apoptotic cells was found in the group with 10 ECSs, whereas no significant change in it was found in either a single ECS or 20 ECSs group compared to sham treatment. These findings indicate that the optimal number of treatments and duration of stimulation requires investigation. Further studies are needed to elucidate the intracellular mechanisms underlying both effective and excessive ECT.
Collapse
Affiliation(s)
- Masanobu Ito
- Department of Psychiatry, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Serotonin-dopamine antagonism ameliorates impairments of spontaneous alternation and locomotor hyperactivity induced by repeated electroconvulsive seizures in rats. Epilepsy Res 2010; 90:221-7. [PMID: 20605414 DOI: 10.1016/j.eplepsyres.2010.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 11/23/2022]
Abstract
We have shown that seven consecutive administrations of electroconvulsive shock (ECS) produce impairment of spontaneous alternation behavior in a Y-maze test and a locomotor hyperactivity in an open-field test even 24h after the last administration in rats. To clarify the mechanisms of the behavioral impairments, we investigated the effect of drugs acting on dopaminergic and serotonergic nervous systems. The dopamine-2 (D(2)) receptor antagonists haloperidol and sulpiride abolished locomotor hyperactivity, but did not show effects on the impairment of spontaneous alternation behavior. The serotonin-2 (5-HT(2)) receptor antagonist ketanserin suppressed the impairment of spontaneous alternation behavior without affecting locomotor hyperactivity. The 5-HT(2) and D(2) receptor antagonist risperidone significantly ameliorated both behavioral impairments. These results suggest that 5-HT(2) receptors and D(2) receptors are associated with repeated ECS-induced impairment of spontaneous alternation behavior and locomotor hyperactivity, respectively.
Collapse
|