1
|
Gao Y, Zhai W, Sun L, Du X, Wang X, Mulholland MW, Yin Y, Zhang W. Hepatic LGR4 aggravates cholestasis-induced liver injury in mice. Am J Physiol Gastrointest Liver Physiol 2024; 326:G460-G472. [PMID: 38440827 PMCID: PMC11213478 DOI: 10.1152/ajpgi.00127.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Current therapy for hepatic injury induced by the accumulation of bile acids is limited. Leucine-rich repeat G protein-coupled receptor 4 (LGR4), also known as GPR48, is critical for cytoprotection and cell proliferation. Here, we reported a novel function for the LGR4 in cholestatic liver injury. In the bile duct ligation (BDL)-induced liver injury model, hepatic LGR4 expression was significantly downregulated. Deficiency of LGR4 in hepatocytes (Lgr4LKO) notably decreased BDL-induced liver injury measured by hepatic necrosis, fibrosis, and circulating liver enzymes and total bilirubin. Levels of total bile acids in plasma and liver were markedly reduced in these mice. However, deficiency of LGR4 in macrophages (Lyz2-Lgr4MKO) demonstrated no significant effect on liver injury induced by BDL. Deficiency of LGR4 in hepatocytes significantly attenuated S1PR2 and the phosphorylation of protein kinase B (AKT) induced by BDL. Recombinant Rspo1 and Rspo3 potentiated the taurocholic acid (TCA)-induced upregulation in S1PR2 and phosphorylation of AKT in hepatocytes. Inhibition of S1PR2-AKT signaling by specific AKT or S1PR2 inhibitors blocked the increase of bile acid secretion induced by Rspo1/3 in hepatocytes. Our studies indicate that the R-spondins (Rspos)-LGR4 signaling in hepatocytes aggravates the cholestatic liver injury by potentiating the production of bile acids in a S1PR2-AKT-dependent manner.NEW & NOTEWORTHY Deficiency of LGR4 in hepatocytes alleviates BDL-induced liver injury. LGR4 in macrophages demonstrates no effect on BDL-induced liver injury. Rspos-LGR4 increases bile acid synthesis and transport via potentiating S1PR2-AKT signaling in hepatocytes.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Wenbo Zhai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Lijun Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Xueqian Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Xianfeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Michael W Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
| | - Weizhen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, People's Republic of China
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Arana MR, Dominguez CJ, Zecchinati F, Tocchetti GN, Mottino AD, Villanueva SSM. Role of interleukin 1 beta in the regulation of rat intestinal multidrug resistance-associated protein 2 under conditions of experimental endotoxemia. Toxicology 2020; 441:152527. [PMID: 32553669 DOI: 10.1016/j.tox.2020.152527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/26/2022]
Abstract
Multidrug resistance-associated protein 2 (Mrp2), expressed at the brush border membrane (BBM) of the enterocyte, is an ABC transporter with relevant intestinal barrier function. Its toxicological relevance lies in preventing absorption and tissue accumulation of dietary contaminants, drugs, and potentially harmful endogenous metabolites. Expression and activity of intestinal Mrp2 is downregulated in LPS-induced endotoxemia. In addition, confocal microscopy studies demonstrated internalization of the transporter to endocytic vesicles. Since IL-1β plays an important role as early mediator of LPS-inflammatory responses, we evaluated whether IL-1β mediates LPS-induced impairment of Mrp2 function. Two protocols were used: I) In vivo administration of LPS (5 mg/kg b.wt., i.p., single dose) to rats in simultaneous with administration of anti-IL-1β (25 μg/kg b.wt., i.p., 4 doses), followed by studies of Mrp2 expression, localization and activity, 24 h after LPS administration; II) In vitro incubation of isolated intestinal sacs with IL-1β (10 ng/mL) for 30 min, followed by analysis of Mrp2 activity and localization. We found that in vivo immunoneutralization of IL-1β partially prevented the decrease of Mrp2 protein expression and activity as well as its internalization to intracellular domains induced by LPS. Involvement of IL-1β in the alteration of Mrp2 localization and activity was more directly demonstrated in isolated intestinal sacs, as incubation with IL-1β resulted in detection of Mrp2 in intracellular regions of the enterocyte in simultaneous with alteration of transport activity. In conclusion, IL-1β induces early internalization of intestinal Mrp2, which could partially explain loss of expression at the BBM under conditions of experimental endotoxemia. Concomitant impairment of Mrp2-dependent barrier function may have pathophysiological relevance since IL-1β mediates the effect of many local and systemic inflammatory processes.
Collapse
Affiliation(s)
- Maite Rocío Arana
- Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR). Suipacha 570, 2000, Rosario, Argentina
| | - Camila Juliana Dominguez
- Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR). Suipacha 570, 2000, Rosario, Argentina
| | - Felipe Zecchinati
- Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR). Suipacha 570, 2000, Rosario, Argentina
| | - Guillermo Nicolás Tocchetti
- Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR). Suipacha 570, 2000, Rosario, Argentina
| | - Aldo Domingo Mottino
- Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR). Suipacha 570, 2000, Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Instituto de Fisiología Experimental (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR). Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
3
|
Ka H, Seo H, Choi Y, Yoo I, Han J. Endometrial response to conceptus-derived estrogen and interleukin-1β at the time of implantation in pigs. J Anim Sci Biotechnol 2018; 9:44. [PMID: 29928500 PMCID: PMC5989395 DOI: 10.1186/s40104-018-0259-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
The establishment of pregnancy is a complex process that requires a well-coordinated interaction between the implanting conceptus and the maternal uterus. In pigs, the conceptus undergoes dramatic morphological and functional changes at the time of implantation and introduces various factors, including estrogens and cytokines, interleukin-1β2 (IL1B2), interferon-γ (IFNG), and IFN-δ (IFND), into the uterine lumen. In response to ovarian steroid hormones and conceptus-derived factors, the uterine endometrium becomes receptive to the implanting conceptus by changing its expression of cell adhesion molecules, secretory activity, and immune response. Conceptus-derived estrogens act as a signal for maternal recognition of pregnancy by changing the direction of prostaglandin (PG) F2α from the uterine vasculature to the uterine lumen. Estrogens also induce the expression of many endometrial genes, including genes related to growth factors, the synthesis and transport of PGs, and immunity. IL1B2, a pro-inflammatory cytokine, is produced by the elongating conceptus. The direct effect of IL1B2 on endometrial function is not fully understood. IL1B activates the expression of endometrial genes, including the genes involved in IL1B signaling and PG synthesis and transport. In addition, estrogen or IL1B stimulates endometrial expression of IFN signaling molecules, suggesting that estrogen and IL1B act cooperatively in priming the endometrial function of conceptus-produced IFNG and IFND that, in turn, modulate endometrial immune response during early pregnancy. This review addresses information about maternal-conceptus interactions with respect to endometrial gene expression in response to conceptus-derived factors, focusing on the roles of estrogen and IL1B during early pregnancy in pigs.
Collapse
Affiliation(s)
- Hakhyun Ka
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| | - Heewon Seo
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea.,2Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX 77843-2471 USA
| | - Yohan Choi
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea.,3Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298 USA
| | - Inkyu Yoo
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| | - Jisoo Han
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| |
Collapse
|
4
|
Bátai-Konczos A, Veres Z, Szabó M, Ioja E, László G, Török G, Homolya L, Jemnitz K. Comparative study of CYP2B1/2 induction and the transport of bilirubin and taurocholate in rat hepatocyte-mono- and hepatocyte-Kupffer cell co-cultures. J Pharmacol Toxicol Methods 2016; 82:1-8. [DOI: 10.1016/j.vascn.2016.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 01/22/2023]
|
5
|
YANG KYUNGHEE, KÖCK KATHLEEN, SEDYKH ALEXANDER, TROPSHA ALEXANDER, BROUWER KIML. An updated review on drug-induced cholestasis: mechanisms and investigation of physicochemical properties and pharmacokinetic parameters. J Pharm Sci 2013; 102:3037-57. [PMID: 23653385 PMCID: PMC4369767 DOI: 10.1002/jps.23584] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/15/2022]
Abstract
Drug-induced cholestasis is an important form of acquired liver disease and is associated with significant morbidity and mortality. Bile acids are key signaling molecules, but they can exert toxic responses when they accumulate in hepatocytes. This review focuses on the physiological mechanisms of drug-induced cholestasis associated with altered bile acid homeostasis due to direct (e.g., bile acid transporter inhibition) or indirect (e.g., activation of nuclear receptors, altered function/expression of bile acid transporters) processes. Mechanistic information about the effects of a drug on bile acid homeostasis is important when evaluating the cholestatic potential of a compound, but experimental data often are not available. The relationship between physicochemical properties, pharmacokinetic parameters, and inhibition of the bile salt export pump among 77 cholestatic drugs with different pathophysiological mechanisms of cholestasis (i.e., impaired formation of bile vs. physical obstruction of bile flow) was investigated. The utility of in silico models to obtain mechanistic information about the impact of compounds on bile acid homeostasis to aid in predicting the cholestatic potential of drugs is highlighted.
Collapse
Affiliation(s)
- KYUNGHEE YANG
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - KATHLEEN KÖCK
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - ALEXANDER SEDYKH
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - ALEXANDER TROPSHA
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - KIM L.R. BROUWER
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
6
|
Fujiyama N, Shitara Y, Horie T. The mechanism of the down-regulation of hepatic transporters in rats with indomethacin-induced intestinal injury. Dig Dis Sci 2013; 58:1891-8. [PMID: 23443493 DOI: 10.1007/s10620-013-2587-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 01/24/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Previously, we reported that hepatic transporters were down-regulated consistent with intestinal injury in indomethacin (IDM)-treated rats. AIM The purpose of this study was to characterize this mechanism of the down-regulation of hepatic transporters in IDM-treated rats. METHODS Hepatic nuclear receptor expressions, oxidative stress condition and the expression of hepatic transporters were evaluated in rats with IDM-induced intestinal injury with or without the administration of mucosal protectant ornoprostil, a prostaglandin E1 analogue, or aminoguanidine (AG), an iNOS inhibitor. RESULTS All the nuclear receptors examined in the present study, which regulates hepatic transporters, were decreased by the administration of IDM. Hepatic glutathione, an indicator of oxidative stress, was significantly reduced compared with control. We then determined the expression of hepatic transporters by semi-quantitative real-time RT-PCR and Western blot analysis in IDM-treated rats with or without the administration of ornoprostil or AG. Ornoprostil recovered the gene expression of Oatp1a1, Oatp1b2 and Mrp2 and protein expression of Mrp2 while it had no effect on Oatp1a1 and Oatp1b2 proteins. These results indicated that the gene expression of hepatic transporters was down-regulated in association with the intestinal injury. On the other hand, there is no effect of AG on the reduced gene expression of hepatic Oatp1a1, Oatp1b2 and Mrp2. In protein expression, AG slightly recovered Mrp2 expression accompanied by a partial decrease in portal NO levels. CONCLUSIONS We suggest that the transcriptional process influenced by a dysfunction of hepatic nuclear receptors as well as the effect of NO on the post-transcriptional process due to intestinal injury are partially involved in the down-regulation of hepatic transporters.
Collapse
Affiliation(s)
- Nobuhiro Fujiyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chūō-ku, Chiba 260-8675, Japan
| | | | | |
Collapse
|
7
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
8
|
Abo-Salem OM. The protective effect of aminoguanidine on doxorubicin-induced nephropathy in rats. J Biochem Mol Toxicol 2012; 26:1-9. [DOI: 10.1002/jbt.20422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
González R, Cruz A, Ferrín G, López-Cillero P, Fernández-Rodríguez R, Briceño J, Gómez MA, Rufián S, Mata MDL, Martínez-Ruiz A, Marin JJG, Muntané J. Nitric oxide mimics transcriptional and post-translational regulation during α-tocopherol cytoprotection against glycochenodeoxycholate-induced cell death in hepatocytes. J Hepatol 2011; 55:133-44. [PMID: 21145864 DOI: 10.1016/j.jhep.2010.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Reactive oxygen species (ROS) and nitric oxide (NO) exert a relevant role during bile acid-induced hepatotoxicity. Whether α-Tocopherol regulates oxidative and nitrosative stress, bile acid transporter expression and their NO-dependent post-translational modifications, and cell death were assessed in vitro and in vivo. METHODS α-Tocopherol and/or NO donors (DETA-NONOate or CSNO, and V-PYRRO/NO) were administered to glycochenodeoxycholic acid (GCDCA)-treated cultured human hepatocytes or to bile duct obstructed rats. Cell injury, superoxide anion (O⁻₂) production, as well as inducible nitric oxide synthase (NOS-2), cytochrome P4507A1 (CYP7A1), heme oxygenase-1, (HO-1) and bile acid transporter expression were determined. Cysteine S-nitrosylation and tyrosine nitration of Na(+)-taurocholate co-transporting polypeptide (NTCP), as well as taurocholic acid (TC) uptake were also evaluated. RESULTS GCDCA-induced cell death was associated with increased (O⁻₂) production, NTCP and HO-1 expression, and with a reduction of CYP7A1 and NOS-2 expression. α-Tocopherol reduced cell death, (O⁻₂) production, CYP7A1, NTCP, and HO-1 expression, as well as increased NOS-2 expression and NO production in GCDCA-treated hepatocytes. α-Tocopherol and NO donors increased NTCP cysteine S-nitrosylation and tyrosine nitration, and reduced TC uptake in hepatocytes. α-Tocopherol and V-PYRRO/NO reduced liver injury and NTCP expression in obstructed rats. CONCLUSIONS The regulation of CYP7A1, NTCP, and HO-1 expression may be relevant for the cytoprotective properties of α-Tocopherol and NO against mitochondrial dysfunction, oxidative stress and cell death in GCDCA-treated hepatocytes. The regulation of NO-dependent post-translational modifications of NTCP by α-Tocopherol and NO donors reduces the uptake of toxic bile acids by hepatocytes.
Collapse
Affiliation(s)
- Raúl González
- Instituto Maimónides para la Investigación Biomédica de Córdoba, Reina Sofia University Hospital, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA, Takezawa T, Kusuhara H, Sugiyama Y. Culture Period-Dependent Changes in the Uptake of Transporter Substrates in Sandwich-Cultured Rat and Human Hepatocytes. Drug Metab Dispos 2011; 39:1503-10. [DOI: 10.1124/dmd.111.038968] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
11
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
12
|
Brcakova E, Fuksa L, Cermanova J, Kolouchova G, Hroch M, Hirsova P, Martinkova J, Staud F, Micuda S. Alteration of methotrexate biliary and renal elimination during extrahepatic and intrahepatic cholestasis in rats. Biol Pharm Bull 2010; 32:1978-85. [PMID: 19952415 DOI: 10.1248/bpb.32.1978] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Methotrexate (MTX), an important anticancer and immunosuppressive agent, has been suggested for the treatment of primary biliary cirrhosis. However, the drug's pharmacodynamics and toxicity is dependent on its concentrations in plasma which in turn are directly related to MTX's elimination in the liver and kidney. Therefore, the aim of this study was to evaluate changes in MTX biliary and renal excretion during either intrahepatic or obstructive cholestasis in rats. The steady state pharmacokinetic parameters of MTX were evaluated in rats one (BDO1) or seven (BDO7) days after bile duct obstruction (BDO) or 18 h after administration of lipopolysaccharide (LPS). In comparison to the respective control groups, biliary and total clearances of MTX were decreased to 12% and 49% in the BDO1 group, to 5% and 56% in the BDO7 animals, and to 42% and 43% in the LPS group, respectively. Renal clearance of MTX was unchanged in BDO groups, but decreased to 23% of controls in the LPS animals. The serum biochemistry and expression of main hepatic MTX transporters (Mrp2, Mrp3, Mrp4, Bcrp, Oatp1a1, Oatp1a4 and Oatp1b2) confirmed the pathological cholestatic changes in the liver and partly elucidated the cause of changes in MTX pharmacokinetic parameters. In conclusion, this study is the first describing marked alteration of MTX hepatic and renal elimination induced by cholestasis in rats. Moreover, the reported changes in MTX pharmacokinetics and respective transporter expression suggest important mechanistic differences between the two widely used cholestatic models.
Collapse
Affiliation(s)
- Eva Brcakova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Horiuchi I, Mori YI, Taguchi M, Ichida F, Miyawaki T, Hashimoto Y. Mechanisms responsible for the altered pharmacokinetics of Bosentan: analysis utilizing rats with bile duct ligation-induced liver dysfunction. Biopharm Drug Dispos 2009; 30:326-33. [DOI: 10.1002/bdd.671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Chen XM, Kitts DD. Determining conditions for nitric oxide synthesis in Caco-2 cells using Taguchi and factorial experimental designs. Anal Biochem 2008; 381:185-92. [PMID: 18664363 DOI: 10.1016/j.ab.2008.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 11/25/2022]
Abstract
Intestinal inflammation correlates well with the increased synthesis of nitric oxide (NO), which is attributed mainly to the up-regulation of inducible nitric oxide synthase (iNOS). We optimized the use of interferon gamma (IFN-gamma), tumour necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), lipopolysaccharide (LPS), and phorbol myristate acetate (PMA) as inducers to stimulate NO synthesis in Caco-2 cells using a Taguchi design. The results indicated that IFN-gamma was the most important inducer of iNOS in Caco-2 cells. Treating Caco-2 cells with both IFN-gamma and PMA using an optimal mixture of 8000 U/ml IFN-gamma and 0.1 microg/ml of PMA resulted in a synergistic induction of NO synthesis. Further experiments using a 5-factor/2-level factorial design including Caco-2 growth conditions such as cell passage, culture medium composition, cell seeding time and density, and stimulation time were also performed. Cell seeding and stimulation times significantly (P<0.05) affected NO synthesis, whereas culture medium and seeding density did not appreciably affect NO synthesis in Caco-2 cells. Western blotting and RT-PCR findings confirmed that the optimal mixture of IFN-gamma and PMA effectively up-regulated iNOS mRNA and protein. The induced NO, iNOS mRNA, and protein were all inhibited by the iNOS selective inhibitor, aminoguanidine (AG).
Collapse
Affiliation(s)
- Xiu-Min Chen
- Food, Nutrition, and Health, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | | |
Collapse
|
15
|
Aoki K, Saso N, Kato S, Sugiyama Y, Sato H. Nitric Oxide and Peroxynitrite Regulate Transporter Transcription in Rat Liver Slices. Biol Pharm Bull 2008; 31:1882-7. [DOI: 10.1248/bpb.31.1882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kimiko Aoki
- School of Pharmaceutical Sciences, Showa University
- Nihon Pharmaceutical University
| | - Naomi Saso
- School of Pharmaceutical Sciences, Showa University
| | - Satoko Kato
- School of Pharmaceutical Sciences, Showa University
| | - Yuichi Sugiyama
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | - Hitoshi Sato
- School of Pharmaceutical Sciences, Showa University
| |
Collapse
|