1
|
Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, Chieosilapatham P, Peng G, Yue H, Nguyen HLT, Song P, Okumura K, Ogawa H, Niyonsaba F. Intractable Itch in Atopic Dermatitis: Causes and Treatments. Biomedicines 2021; 9:biomedicines9030229. [PMID: 33668714 PMCID: PMC7996203 DOI: 10.3390/biomedicines9030229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from various environmental factors or physiological abnormalities. Because histamine is a well-known substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus. However, H1-antihistamines are not fully effective against intractable itch in patients with atopic dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.
Collapse
Affiliation(s)
- Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Chanisa Kiatsurayanon
- Institute of Dermatology, Department of Medical Services, Ministry of Public Health, Bangkok 10400, Thailand;
| | - Juan Valentin Trujillo-Paez
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Panjit Chieosilapatham
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hainan Yue
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hai Le Thanh Nguyen
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; (Y.U.); (J.V.T.-P.); (G.P.); (H.Y.); (H.L.T.N.); (K.O.); (H.O.)
- Faculty of International Liberal Arts, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: ; Tel.: +81-3-5802-1591; Fax: +81-3-3813-5512
| |
Collapse
|
2
|
Peripheral gabapentin regulates mosquito allergy-induced itch in mice. Eur J Pharmacol 2018; 833:44-49. [PMID: 29842875 DOI: 10.1016/j.ejphar.2018.05.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 11/24/2022]
Abstract
The antipruritic activity of gabapentin, an anticonvulsant, was studied in a mouse model of allergic itch. In mice sensitized by an extract of the salivary glands of the mosquito (ESGM), an intradermal injection of ESGM elicited scratching and increased peripheral nerve firing. Oral or intradermal administration of gabapentin at the ESGM injection site inhibited ESGM-induced scratching and peripheral nerve firing. However, gabapentin did not affect histamine-induced scratching. The distributions of immunoreactivity to the voltage-dependent calcium channel α2δ-1 subunit, a site of gabapentin action, and the histamine H1 receptor differed in the mouse dorsal root ganglia. The α2δ-1 subunit was mainly found in neurons that were 15-20 µm in diameter, whereas the H1 receptor was mainly in 20-30 µm neurons. In addition, α2δ-1 subunit immunoreactivity co-localized with that of transient receptor potential vanilloid 1 (TRPV1). These results suggest that gabapentin regulates allergic itch by acting on the calcium channel α2δ-1 subunit in peripheral TRPV1-positive neurons.
Collapse
|
3
|
Zhu Y, Pan WH, Wang XR, Liu Y, Chen M, Xu XG, Liao WQ, Hu JH. Tryptase and protease-activated receptor-2 stimulate scratching behavior in a murine model of ovalbumin-induced atopic-like dermatitis. Int Immunopharmacol 2015; 28:507-12. [PMID: 26049029 DOI: 10.1016/j.intimp.2015.04.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 11/16/2022]
Abstract
The aim of the current study was to investigate the involvement of tryptase and protease-activated receptor-2 (PAR2) in the pathogenesis of itch using a recently developed murine model of atopic dermatitis (AD) elicited by epicutaneous sensitization with ovalbumin (OVA). We also examined whether tacrolimus exerts an antipruritic effect. Epicutaneous sensitization of BALB/c mice with OVA led to a significant increase in the number of scratches. Notably, PAR2 mRNA and protein levels as well as cutaneous levels of tryptase were significantly enhanced in epicutaneously sensitized mice. Pretreatment with the protease inhibitor, leupeptin, PAR2 antibody, and tacrolimus significantly reduced the number of degranulated mast cells and tryptase content, and consequently alleviated scratching behavior. Cetirizine (10mg/kg) exerted a significant inhibitory effect on the scratching behavior of mice, but did not affect the number of degranulated mast cells and induction of tryptase. Our results collectively suggest that tryptase and PAR2 are involved in OVA allergy-induced scratching behavior.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China; Institute of Medical Mycology, Shanghai, PR China
| | - Wei Hua Pan
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China; Institute of Medical Mycology, Shanghai, PR China
| | - Xiao Rong Wang
- Department of Obstetrics and Gynecology, Heilongjiang Provincial Corps Hospital, Chinese People's Armed Police Forces, Harbin, PR China
| | - Ying Liu
- Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, PR China
| | - Min Chen
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China; Institute of Medical Mycology, Shanghai, PR China; Shanghai Key Laboratory of Molecular Medical Mycology, PR China; PLA Key Laboratory of Mycosis, PR China
| | - Xiao Guang Xu
- Institute of Medical Mycology, Shanghai, PR China; Shanghai Key Laboratory of Molecular Medical Mycology, PR China; PLA Key Laboratory of Mycosis, PR China
| | - Wan Qing Liao
- Institute of Medical Mycology, Shanghai, PR China; Shanghai Key Laboratory of Molecular Medical Mycology, PR China; PLA Key Laboratory of Mycosis, PR China.
| | - Jin Hong Hu
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, PR China.
| |
Collapse
|
4
|
Abstract
Protease-activated receptors (PARs) have been implicated in a variety of physiological functions, as well as somatosensation and particularly itch and pain. Considerable attention has focused on PARs following the finding they are upregulated in the skin of atopic dermatitis patients. The present review focuses on recent studies showing that PARs are critically involved in itch and sensitization of itch. PARs are expressed by diverse cell types including primary sensory neurons, keratinocytes, and immune cells and are activated by proteases that expose a tethered ligand. Endogenous proteases are also released from diverse cell types including keratinocytes and immune cells. Exogenous proteases released from certain plants and insects contacting the skin can also induce itch. Increased levels of proteases in the skin contribute to inflammation that is often accompanied by chronic itch which is not predominantly mediated by histamine. The neural pathway signaling itch induced by activation of PARs is distinct from that mediating histamine-induced itch. In addition, there is evidence that PARs play an important role in sensitization of itch signaling under conditions of chronic itch. These recent findings suggest that PARs and other molecules involved in the itch-signaling pathway are good targets to develop novel treatments for most types of chronic itch that are poorly treated with antihistamines.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Dermatology, Anatomy and Cell Biology/Temple Itch Center, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | | | | |
Collapse
|
5
|
Evaluation on potential contributions of protease activated receptors related mediators in allergic inflammation. Mediators Inflamm 2014; 2014:829068. [PMID: 24876677 PMCID: PMC4021743 DOI: 10.1155/2014/829068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.
Collapse
|
6
|
|
7
|
Glycyrrhetinic acid prevents cutaneous scratching behavior in mice elicited by substance P or PAR-2 agonist. Eur J Pharmacol 2011; 670:175-9. [PMID: 21925497 DOI: 10.1016/j.ejphar.2011.08.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/05/2011] [Accepted: 08/27/2011] [Indexed: 11/23/2022]
Abstract
Although glycyrrhetinic acid (GA) has been used for the prevention of itch in chronic dermatitis, the mechanism underlying the antipruritic effects of GA is still unclear. Recently, several mediators other than histamine, such as substance P and tryptase, were found to participate in chronic itch. Here, we investigated the effect of GA on pruritus induced by various pruritic agents including histamine in mice. We also determined the level of leukotriene (LT)B(4) in mouse skin injected with substance P in an effort to uncover part of the antipruritic mechanism of GA. Scratching events were counted for 10 min after intradermal injection of histamine, substance P (100 nmol per site each), protease-activated receptor-2 (PAR-2) agonistic peptide (50 nmol per site), or LTB(4) (0.03 nmol per site) with or without GA (4 nmol per site) into male ICR mice. Levels of LTB(4) in the skin after injection of substance P were determined by ELISA. GA did not suppress scratching behavior induced by histamine and LTB(4), but markedly and dose-dependently suppressed that induced by substance P and PAR-2 agonistic peptide. LTB(4) levels in skin elevated by substance P were lowered by GA. These data support the efficacy of GA in counteracting itch in chronic dermatitis because GA reduced scratching behavior induced by substance P and PAR-2 agonistic peptide. GA may exert antipruritic effects via inhibition of LTB(4) production in skin.
Collapse
|
8
|
Gotoh Y, Andoh T, Kuraishi Y. Noradrenergic regulation of itch transmission in the spinal cord mediated by α-adrenoceptors. Neuropharmacology 2011; 61:825-31. [DOI: 10.1016/j.neuropharm.2011.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 11/27/2022]
|
9
|
Gotoh Y, Omori Y, Andoh T, Kuraishi Y. Tonic inhibition of allergic itch signaling by the descending noradrenergic system in mice. J Pharmacol Sci 2011; 115:417-20. [PMID: 21372505 DOI: 10.1254/jphs.10305sc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We investigated whether the descending noradrenergic system regulates allergic itch. Mosquito allergy of the hind paw elicited biting, an itch-related response, in sensitized mice. The biting was inhibited by intrathecal clonidine and reversed by yohimbine, an α(2)-adrenoceptor antagonist. The biting was increased by intrathecal pretreatment with the catecholaminergic neurotoxin 6-hydroxydopamine and the α-adrenoceptor antagonist phentolamine but not the serotonergic neurotoxin 5,7-dihydroxytryptamine. We propose that α(2)-adrenoceptors are involved in the inhibition of allergic itch in the spinal cord and that the descending noradrenergic system exerts a tonic inhibition on the itch signaling. The serotonergic system may not be involved.
Collapse
Affiliation(s)
- Yoshikazu Gotoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | | | |
Collapse
|
10
|
Andoh T, Zhang Q, Yamamoto T, Tayama M, Hattori M, Tanaka K, Kuraishi Y. Inhibitory effects of the methanol extract of Ganoderma lucidum on mosquito allergy-induced itch-associated responses in mice. J Pharmacol Sci 2010; 114:292-7. [PMID: 20948166 DOI: 10.1254/jphs.10180fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Recently, we showed that a methanol extract of Ganoderma lucidum inhibits scratching, an itch-related response, induced by intradermal injections of some pruritogens in mice. The present study investigated whether G. lucidum extract would inhibit allergic itch. In mice sensitized with an extract of salivary gland of mosquito (ESGM), an intradermal injection of ESGM elicited scratching, which was suppressed by oral administration of G. lucidum extract (100 and 300 mg/kg). The scratching was inhibited by the H₁ histamine-receptor antagonist azelastine, but not by the peripherally acting H₁-antagonist terfenadine, at the oral dose of 30 mg/kg. In sensitized mice, ESGM increased the activity of cutaneous nerve, which was suppressed by G. lucidum extract (300 mg/kg). Although terfenadine (30 mg/kg) inhibited plasma extravasation induced by ESGM in the sensitized mice, G. lucidum extract (300 mg/kg) was without effect. These results suggest that G. lucidum extract relieves allergic itch through a peripheral action. The results support the idea that mast cells and H₁ histamine receptors are not the primary sites of the antipruritic action of G. lucidum extract.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhu Y, Peng C, Xu JG, Liu YX, Zhu QG, Liu JY, Li FQ, Wu JH, Hu JH. Participation of proteinase-activated receptor-2 in passive cutaneous anaphylaxis-induced scratching behavior and the inhibitory effect of tacrolimus. Biol Pharm Bull 2009; 32:1173-6. [PMID: 19571380 DOI: 10.1248/bpb.32.1173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteinase-activated receptor-2 (PAR2) may be an important regulator of skin mast cell function during cutaneous inflammation and hypersensitivity. However, little is known of the role of PAR2 in allergic pruritus, because mast cells, which are thought to be responsible for this symptom, can release a number of different pruritogens. In the present study, we investigated the effects of several agents on passive cutaneous anaphylaxis-induced scratching behavior in ICR mice. As a result, cetirizine and ketanserin produced dose-dependent inhibition of scratching behavior induced by passive cutaneous anaphylaxis. Combined cetirizine with ketanserin exhibited significant inhibitory effects for the number of passive cutaneous anaphylaxis-induced scratching behavior. Pretreatment of the experimental animals with PAR2-neutralizing antibody and protease inhibitor leupeptin significantly inhibited passive cutaneous anaphylaxis-induced scratching behavior. Furthermore, we found that topical application of tacrolimus significantly reduced the number of scratching behavior induced by passive cutaneous anaphylaxis in a dose-dependent manner. Combined cetirizine with tacrolimus also exhibited significant inhibitory effects for the number of passive cutaneous anaphylaxis-induced scratching behavior. Tacrolimus in doses of 3% and 10% significantly inhibited tryptase-induced scratching behavior. These results suggest that PAR2 may be involved in passive cutaneous anaphylaxis-induced scratching behavior and tacrolimus produces an anti-allergic pruritus effect in ICR mice.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Pharmacy, Changhai Hospital, the Second Military Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Depletion of substance P, a mechanism for inhibition of mouse scratching behavior by tacrolimus. Eur J Pharmacol 2009; 626:283-9. [PMID: 19818345 DOI: 10.1016/j.ejphar.2009.09.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 11/20/2022]
Abstract
Itching is the most important problem in atopic dermatitis and tacrolimus has been suggested to attenuate the itching by topical application. However, the anti-itch mechanism of tacrolimus has not been well elucidated. In the present study, an allergic dermatitis accompanied by frequent scratching behaviors was induced by repeated paintings with 2,4-dinitrofluorobenzene (DNFB) acetone solution onto the mouse ear and the effects of tacrolimus and dexamethasone on the dermatitis and associated scratching behavior were comparatively examined. Repeated DNFB paintings caused a typical dermatitis accompanied by elevated serum immunoglobulin E (IgE) and frequent scratching behaviors. Both tacrolimus and dexamethasone given topically for 10 days before the final challenge significantly inhibited the ear swelling and reduced the expression of interferon-gamma mRNA. Dexamethasone inhibited the accumulation of eosinophils completely, although tacrolimus did not. Both drugs did not affect the elevation of serum IgE levels. Tacrolimus significantly inhibited the scratching behavior, whereas dexamethasone failed to affect it. Repeated DNFB challenge depleted substance P in the dermis. Treatment with tacrolimus before the final challenge completely inhibited the recovery of substance P content, whereas dexamethasone facilitated the recovery. DNFB-induced ear swelling and scratching behavior were significantly inhibited by FK888, a tachykinin NK(1) receptor antagonist. Therefore, substance P seems to participate in the induction of ear swelling and scratching behavior upon final challenge with DNFB, and depletion of substance P by tacrolimus in the dermis contributes to its inhibition of ear swelling and scratching behavior at least in part.
Collapse
|
13
|
Zhu Y, Wang XR, Peng C, Xu JG, Liu YX, Wu L, Zhu QG, Liu JY, Li FQ, Pan YH, You BM, Hu JH. Induction of leukotriene B(4) and prostaglandin E(2) release from keratinocytes by protease-activated receptor-2-activating peptide in ICR mice. Int Immunopharmacol 2009; 9:1332-6. [PMID: 19712758 DOI: 10.1016/j.intimp.2009.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/10/2009] [Accepted: 08/14/2009] [Indexed: 11/25/2022]
Abstract
Protease-activated receptor-2 (PAR2) has been shown to play a key role in the pathophysiology of itch. However, the precise mechanism of PAR2-mediated itch remains largely unknown. In the present study, we investigated the effects of several agents on the scratching behavior induced by PAR2-activating peptide (SLIGRL-NH2). Pretreatment of experimental animals with tacrolimus or the 5-lipoxygenase inhibitor zileuton significantly reduced SLIGRL-NH2-induced scratching behavior, whereas histamine H(1) receptor antagonist cetirizine or the cyclooxygenase inhibitor indomethacin had little effect. Furthermore, intradermal injection of SLIGRL-NH2 increased cutaneous levels of LTB(4) and PGE(2). In vitro, SLIGRL-NH2 treatment enhanced LTB(4) and PGE(2) release from primary keratinocytes in a concentration-dependent manner. Preincubation of keratinocytes with zileuton resulted in a significant decrease of LTB(4) release and treatment of indomethacin led to a significant decrease of PGE(2) in response to SLIGRL-NH2 stimulation. In addition, SLIGRL-NH2-induced secretion of LTB(4) and PGE(2) was significantly inhibited by tacrolimus, whereas cetirizine had no effect. These results indicate that SLIGRL-NH2 stimulates LTB(4) and PGE(2) release from mouse keratinocytes and that enhancement of LTB(4) and PGE(2) secretion contributes to SLIGRL-NH2-induced scratching behavior in ICR mice.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Pharmacy, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shii D, Oda T, Shinomiya K, Katsuta O, Nakamura M. Cyclosporine A Eye Drops Inhibit the Early-Phase Reaction in a Type-I Allergic Conjunctivitis Model in Mice. J Ocul Pharmacol Ther 2009; 25:321-8. [DOI: 10.1089/jop.2009.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Daisuke Shii
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Tomoko Oda
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Katsuhiko Shinomiya
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Osamu Katsuta
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| | - Masatsugu Nakamura
- Research and Development Center, Santen Pharmaceutical Co., Ltd., Ikoma-shi, Nara, Japan
| |
Collapse
|
15
|
Tsujii K, Andoh T, Ui H, Lee JB, Kuraishi Y. Involvement of Tryptase and Proteinase-Activated Receptor-2 in Spontaneous Itch-Associated Response in Mice With Atopy-like Dermatitis. J Pharmacol Sci 2009; 109:388-95. [DOI: 10.1254/jphs.08332fp] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|