1
|
Moghimani M, Onyeaka H, Hashemi M, Afshari A. Evaluation of the probiotic, technological, safety attributes, and GABA-producing capacity of microorganisms isolated from Iranian milk kefir beverages. Front Microbiol 2024; 15:1385301. [PMID: 38903778 PMCID: PMC11188319 DOI: 10.3389/fmicb.2024.1385301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Kefir beverage has beneficial microorganisms that have health-giving properties; therefore, they have a good potential to be probiotic. This study evaluated the probiotic potential, technological, and safety characteristics of Enterococcus faecalis, Lactococcus lactis, and Pichia fermentans isolated from traditional kefir beverages. Method First, isolates were evaluated in terms of resistance to acid, alkali, bile salts, trypsin, and pepsin of the gastrointestinal tract. The auto-aggregation and co-aggregation ability of isolates were measured using spectrophotometry. Antimicrobial activities were assayed against important food-borne pathogens using the agar well diffusion method. Moreover, gamma-aminobutyric acid (GABA) production was investigated by thin-layer chromatography (TLC). Result Among the isolates, P. fermentans had an 85% total survival rate, but its amount reached below 6 log CFU/ml which is considered non-resistant, and it showed the highest auto-aggregation (74.67%). Moreover, only L. lactis showed antimicrobial activity and had the highest co-aggregation with E. coli PTCC 1338 (54.33%) and L. monocytogenes ATCC 7644 (78%). Finally, an evaluation of the technological and safety characteristics of the strains showed that the strains produced GABA and were safe. Discussion Although the isolates were not resistant to the gastrointestinal tract, their supernatant contained valuable natural compounds, including antioxidants, GABA, and antimicrobials, which can be used to produce functional foods and medicines. In addition, other approaches, such as increasing the initial number of strains, using foods as carriers of isolates, and encapsulating the isolates, can effectively increase the survivability of isolates in the gastrointestinal tract.
Collapse
Affiliation(s)
- Minoo Moghimani
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, United Kingdom
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Afshari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Screening of lactic acid bacteria strains isolated from Iranian traditional dairy products for GABA production and optimization by response surface methodology. Sci Rep 2023; 13:440. [PMID: 36624130 PMCID: PMC9829902 DOI: 10.1038/s41598-023-27658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
A total of 50 lactic acid bacteria (LAB) isolates from Iranian traditional dairy products (Motal and Lighvan cheeses, and artisanal yogurt) were screened for gamma-aminobutyric acid (GABA) production. Firstly, a rapid colorimetric test was performed to evaluate the glutamate decarboxylase (GAD) activity among the LAB isolates examined. Thin layer chromatography (TLC) was then performed on selected strains to identify isolates with high/moderate GABA producing capacity, and a GABase micro-titer plate assay was employed to quantify GABA. Finally, two Lactococcus (Lac.) lactis strains were selected for GABA production optimization via Response Surface Methodology (RSM) following Central Composite Design (CCD). Forty-one out of the 50 isolates showed GAD activity according to the colorimetric assay. Eight isolates displayed strong GAD activity, while nine showed no activity; low to moderate GAD activity was scored for all other isolates. GABA production was confirmed by TLC in all isolates with high GAD activity and in four selected among isoaltes with moderate activity. Among the Lactococcus strains tested, Lac. lactis 311 and Lac. lactis 491 were the strongest GABA producers with amounts of 3.3 and 1.26 mM, respectively. These two strains were subjected to GABA production optimization applying RSM and CCD on three key variables: Monosodium glutamate concentration (MSG) (between 25 and 150 mM), incubation temperature (between 25 and 37 °C), and pH (between 4.0 and 5.0). Optimal conditions for GABA production by Lac. lactis 311 and Lac. lactis 491 of temperature, pH and MSG concentration were, respectively, 35.4 and 30 °C, pH 4.5 and 4.6, and MSG concentration of 89 and 147.4 mM, respectively. Under the above conditions, the amount of GABA produced by Lac. lactis 311 and Lac. lactis 491 was 0.395 and 0.179 mg/mL, respectively. These strains and the optimal culture conditions determined in this study could be used for the biotechnological production of GABA or applied in food fermentations for the development of naturally GABA-enriched foods.
Collapse
|
3
|
Fermentation in Pineapple Juice Significantly Enhances Ornithine and Citrulline Production in Lactococcus lactis MSC-3G Isolated from Sugarcane. Microorganisms 2022; 10:microorganisms10050962. [PMID: 35630406 PMCID: PMC9143541 DOI: 10.3390/microorganisms10050962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 12/04/2022] Open
Abstract
Lactic acid bacterial (LAB) fermentation of functional amino acids using fruit juices as a cultivation medium is not well-documented. In the present study, we successfully isolated a high ornithine- and citrulline-producing Lactococcus lactis strain, designated MSC-3G, from sugarcane and investigated the ornithine and citrulline production profile using various fruit juices as a cultivation medium. Among fruit juices, pineapple juice exhibited the highest potentiality to initiate ornithine production (56 mM), while the highest citrulline yield was obtained during lime juice cultivation (34.5 mM). Under the optimal cultivation condition, the highest yield of ornithine and citrulline in pineapple juice reached 98.9 ± 2.2 mM and 211.1 ± 35.7 mM, respectively, both of which were significantly higher than that in the well-known industrial strain of Corynebacterium (C.) glutamicum. Additionally, citrulline production was dependent on oxygen supplementation and increased twofold when grown aerobically. Whole genome sequencing showed that the MSC-3G genome possesses the arginine deiminase (ADI) gene cluster arcABD1C1C2TD2. The results of the ADI pathway enzyme activities of MSC-3G showed a significant increase in arginine deiminase activity, while ornithine carbamoyl transferase activity was decreased, which in turn indicates the high citrulline-accumulation ability of MSC-3G when cultivated in pineapple juice.
Collapse
|
4
|
Characterization of a novel glutamate decarboxylase (GAD) from Latilactobacillus curvatus K285 isolated from Gat -Kimchi. Food Sci Biotechnol 2021; 31:69-78. [DOI: 10.1007/s10068-021-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/18/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022] Open
|
5
|
Gu X, Zhao J, Zhang R, Yu R, Guo T, Kong J. Molecular Analysis of Glutamate Decarboxylases in Enterococcus avium. Front Microbiol 2021; 12:691968. [PMID: 34566904 PMCID: PMC8461050 DOI: 10.3389/fmicb.2021.691968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Enterococcus avium (E. avium) is a common bacterium inhabiting the intestines of humans and other animals. Most strains of this species can produce gamma-aminobutyric acid (GABA) via the glutamate decarboxylase (GAD) system, but the presence and genetic organization of their GAD systems are poorly characterized. In this study, our bioinformatics analyses showed that the GAD system in E. avium strains was generally encoded by three gadB genes (gadB1, gadB2, and gadB3), together with an antiporter gene (gadC) and regulator gene (gadR), and these genes are organized in a cluster. This finding contrasts with that for other lactic acid bacteria. E. avium SDMCC050406, a GABA producer isolated from human feces, was employed to investigate the contribution of the three gadB genes to GABA biosynthesis. The results showed that the relative expression level of gadB3 was higher than those of gadB1 and gadB2 in the exponential growth and stationary phases, and this was accompanied by the synchronous transcription of gadC. After heterologous expression of the three gadB genes in Escherichia coli BL21 (DE3), the Km value of the purified GAD3 was 4.26 ± 0.48 mM, a value lower than those of the purified GAD1 and GAD2. Moreover, gadB3 gene inactivation caused decreased GABA production, accompanied by a reduction in resistance to acid stress. These results indicated that gadB3 plays a crucial role in GABA biosynthesis and this property endowed the strain with acid tolerance. Our findings provided insights into how E. avium strains survive the acidic environments of fermented foods and throughout transit through the stomach and gut while maintaining cell viability.
Collapse
Affiliation(s)
- Xinyi Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiancun Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rongling Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruohan Yu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Differences in the Concentration of the Fecal Neurotransmitters GABA and Glutamate Are Associated with Microbial Composition among Healthy Human Subjects. Microorganisms 2021; 9:microorganisms9020378. [PMID: 33668550 PMCID: PMC7918917 DOI: 10.3390/microorganisms9020378] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that the gut microbiota modulates the physical and psychological functions of the host through several modes of action. One of them is mediating the production of active neurotransmitters, such as serotonin and gamma-aminobutyric acid (GABA). GABA is the major inhibitory neurotransmitter in the central nervous system. Here, we analyzed the relationship between fecal GABA concentration and microbial composition in more than 70 human participants. The gut microbiome composition was analyzed using next-generation sequencing based on 16S ribosomal RNA. High-performance liquid chromatography was used to evaluate the neurotransmitters GABA and glutamate. The GABA level was detected in a broad range (0-330 µg/g feces). The participants' samples were classified into high (>100 µg/g), medium (10-100 µg/g), and low (<10 µg/g) groups, based on fecal GABA concentration. The results reveal that the microbiome of the high-GABA samples had lower alpha diversity than the other samples. Beta diversity analysis showed significant (p < 0.05) separation between the high-GABA samples and others. Furthermore, we surveyed the abundance of specific GABA producer biomarkers among the microbiomes of tested samples. The family Bifidobacteriaceae exhibited high abundance in the microbiome of the high-GABA group. This study demonstrated that Bifidobacterium abundance was associated with high fecal GABA content in healthy human subjects. These results may aid the development of potential probiotics to improve microbial GABA production, which can support the maintenance of the physical and psychiatric health of the host.
Collapse
|
7
|
Luo H, Liu Z, Xie F, Bilal M, Liu L, Yang R, Wang Z. Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives. Crit Rev Biotechnol 2021; 41:491-512. [PMID: 33541153 DOI: 10.1080/07388551.2020.1869688] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important non-protein amino acid with wide-ranging applications. Currently, GABA can be produced by a variety of methods, including chemical synthesis, plant enrichment, enzymatic methods, and microbial production. Among these methods, microbial production has gained increasing attention to meet the strict requirements of an additive in the fields of food, pharmaceutical, and livestock. In addition, renewable and abundant resources, such as glucose and lignocellulosic biomass can also be used for GABA microbial production under mild and environmentally friendly processing conditions. In this review, the applications, metabolic pathways and physiological functions of GABA in different microorganisms were firstly discussed. A comprehensive overview of the current status of process engineering strategies for enhanced GABA production, including fermentation optimization and whole-cell conversion from different feedstocks by various host strains is also provided. We also presented the state-of-the-art achievements in strain development strategies for industrial lactic acid bacteria (LAB), Corynebacterium glutamicum and Escherichia coli to enhance the performance of GABA bioproduction. In order to use bio-based GABA in the fields of food and pharmaceutical, some Generally Recognized as Safe (GRAS) strains such as LAB and C. glutamicum will be the promising chassis hosts. Toward the end of this review, current challenges and valuable research directions/strategies on the improvements of process and strain engineering for economic microbial production of GABA are also suggested.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zheng Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Fang Xie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Rongling Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| |
Collapse
|
8
|
Park JY, Park YL, Choi TR, Kim HJ, Song HS, Han YH, Lee SM, Park SL, Lee HS, Bhatia SK, Gurav R, Yang YH. Production of γ-aminobutyric acid from monosodium glutamate using Escherichia coli whole-cell biocatalysis with glutamate decarboxylase from Lactobacillus brevis KCTC 3498. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0633-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Immobilization and enzymatic properties of glutamate decarboxylase from Enterococcus faecium by affinity adsorption on regenerated chitin. Amino Acids 2020; 52:1479-1489. [PMID: 33128622 DOI: 10.1007/s00726-020-02906-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Glutamate decarboxylase (GAD, EC 4.1.1.15) is an important enzyme in gamma-aminobutyric acid biosynthesis and DL-glutamic acid resolution. In this study, the Enterococcus faecium-derived GAD was successfully immobilized by regenerated chitin (RC) via specific adsorption of cellulose-binding domain (CBD). The optimal binding buffer was 20 mmol/L phosphate buffer saline (pH 8.0), and the RC binding capacity was 1.77 ± 0.11 mgcbd-gad/grc under this condition. The ratio of wet RC and crude enzyme solution used for immobilization was recommended to 3:50 (g/mL). To evaluate the effect of RC immobilization on GAD, properties of the immobilize GAD (RC-CBD-GAD) were investigated. Results indicated RC-CBD-GAD was relatively stable at pH 4.4-5.6 and temperature - 20-40 °C, and the optimal reaction pH value and temperature were pH 4.8 and 50 °C, respectively. When it was reacted with 5 mmol/L of follow chemical reagents respectively, the activity of RC-CBD-GAD was hardly affected by EDTA, KCl, and NaCl, and significantly inactivated by AgNO3, MnSO4, MgSO4, CuSO4, ZnSO4, FeCl2, FeCl3, AlCl3, CaCl2, and Pb(CH3COO)2. The apparent Km and Vmax were 28.35 mmol/L and 147.06 μmol/(gRC-CBD-GAD·min), respectively. The optimum time for a batch of catalytic reaction without exogenous pH control was 2 h. Under this reaction time, RC-CBD-GAD had a good reusability with a half-life of 23 cycles, indicating that it was very attractive for GABA industry. As a novel, efficient, and green CBD binding carrier, RC provides an alternative way to protein immobilization.
Collapse
|
10
|
Enhancing effect of macroporous adsorption resin on gamma-aminobutyric acid production by Enterococcus faecium in whole-cell biotransformation system. Amino Acids 2020; 52:771-780. [DOI: 10.1007/s00726-020-02850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
|
11
|
Rakhimuzzaman M, Noda M, Danshiitsoodol N, Sugiyama M. Development of a System of High Ornithine and Citrulline Production by a Plant-Derived Lactic Acid Bacterium, Weissella confusa K-28. Biol Pharm Bull 2019; 42:1581-1589. [PMID: 31474718 DOI: 10.1248/bpb.b19-00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a bacterium used in industry for production of several amino acids, an endotoxin-free Corynebacterium (C.) glutamicum is well known. However, it is also true that the endotoxin-producing other Corynebacterium species is present. An aim of this study is to obtain a lactic acid bacterium (LAB) that produces ornithine and citrulline at high levels. We successfully isolated a strain, designated K-28, and identified it as Weissella (W.) confusa. The production of ornithine and citrulline by K-28 was 18 ± 1 and 10 ± 2 g/L, respectively, with a 100 ± 9% conversion rate when arginine was continuously fed into a jar fermenter. Although the ornithine high production using C. glutamicum is industrially present, the strains have been genetically modified. In that connection, the wild-type of C. glutamicum produces only 0.5 g/L ornithine, indicating that W. confusa K-28 is superior to C. glutamicum to use a probiotic microorganism. We confirmed that W. confusa K-28 harbors an arginine deiminase (ADI) gene cluster, wkaABDCR. The production of ornithine and the expression of these genes significantly decreased under the aerobic condition rather than anaerobic one. The expression level of the five genes did not differ with or without arginine, suggesting that the production of amino acids in the K-28 strain was not induced by exogenous arginine.
Collapse
Affiliation(s)
- Md Rakhimuzzaman
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
12
|
Noda M, Danshiitsoodol N, Inoue Y, Okamoto T, Sultana N, Sugiyama M. Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human. J Antibiot (Tokyo) 2019; 72:834-842. [PMID: 31399643 DOI: 10.1038/s41429-019-0218-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Abstract
Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.
Collapse
Affiliation(s)
- Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yusuke Inoue
- Mitsui Sugar Co., Ltd., Hakozaki-cho 36-2, Nihonbashi, Chuo-ku, Tokyo, 103-0015, Japan
| | - Tomoko Okamoto
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nasrin Sultana
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
13
|
Application of ion-exchange resin as solid acid for buffer-free production of γ-aminobutyric acid using Enterococcus faecium cells. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Noda M, Shiraga M, Kumagai T, Danshiitsoodol N, Sugiyama M. Characterization of the SN35N Strain-Specific Exopolysaccharide Encoded in the Whole Circular Genome of a Plant-Derived Lactobacillus plantarum. Biol Pharm Bull 2018; 41:536-545. [PMID: 29607926 DOI: 10.1248/bpb.b17-00840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lactobacillus plantarum SN35N, which has been previously isolated from pear, secretes exopolysaccharide (EPS). The aim of the present study is to characterize the EPS chemically and to find the EPS-biosynthesizing gene cluster. The present study demonstrates that the strain produces an acidic EPS carrying phosphate residue, which is composed of glucose, galactose, and mannose at a molecular ratio of 15.0 : 5.7 : 1.0. We also show that acidic EPS strongly inhibits the catalytic activity of hyaluronidase (EC 3.2.1.35), promoting an inflammatory reaction. In the present study, we also determined the complete genome sequence of the SN35N strain, demonstrating that the genome is a circular DNA with 3267626 bp, and the number of predicted coding genes is 3146, with a GC content of 44.51%. In addition, the strain harbors four plasmids, designated pSN35N-1, -2, -3, and -4. Although four EPS-biosynthesizing genes, designated lpe1, lpe2, lpe3, and lpe4, are present in the SN35N chromosomal DNA, another EPS gene cluster, lpe5, is located in the pSN35N-3 plasmid, composed of 35425 bp. EPS low-producing mutants, which were obtained by treating SN35N cells with novobiocin, lost the lpe5 gene cluster in the plasmid-curing experiment, suggesting that the gene cluster for the biosynthesis of acidic EPS is present in the plasmid. The present study shows the chemical characterization of the acidic EPS and its inhibitory effect to the hyaluronidase.
Collapse
Affiliation(s)
- Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masaya Shiraga
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takanori Kumagai
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
15
|
Wang Q, Liu X, Fu J, Wang S, Chen Y, Chang K, Li H. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912. Microb Cell Fact 2018; 17:80. [PMID: 29778094 PMCID: PMC5960080 DOI: 10.1186/s12934-018-0919-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022] Open
Abstract
Background Gamma-aminobutyric acid (GABA) plays a significant role in the food and drug industries. Our previous study established an efficient fed-batch fermentation process for Lactobacillus brevis NCL912 production of GABA from monosodium l-glutamate; however, monosodium l-glutamate may not be an ideal substrate, as it can result in the rapid increase of pH due to decarboxylation. Thus, in this study, l-glutamic acid was proposed as a substrate. To evaluate its potential, key components of the fermentation medium affecting GABA synthesis were re-screened and re-optimized to enhance GABA production from L. brevis NCL912. Results The initial fermentation medium (pH 3.3) used for optimization was: 50 g/L glucose, 25 g/L yeast extract, 10 mg/L manganese sulfate (MnSO4·H2O), 2 g/L Tween-80, and 220 g/L l-glutamic acid. Glucose, a nitrogen source, magnesium, and Tween-80 had notable effects on GABA production from the l-glutamic acid-based process; other factors showed no or marginal effects. The optimized levels of the four key components in the fermentation medium were 25 g/L glucose, 25 g/L yeast extract FM408, 25 mg/L MnSO4·H2O, and 2 g/L Tween-80. A simple and efficient fermentation process for the bioconversion of GABA by L. brevis NCL912 was subsequently developed in a 10 L fermenter as follows: fermentation medium, 5 L; glutamic acid, 295 g/L; inoculum, 10% (v/v); incubation temperature, 32 °C; and agitation, 100 rpm. After 48 h of fermentation, the final GABA concentration increased up to 205.8 ± 8.0 g/L. Conclusions l-Glutamic acid was superior to monosodium l-glutamate as a substrate in the bioproduction of GABA. Thus, a high efficacy bioprocess with 205 g/L GABA for L. brevis NCL912 was established. This strategy may provide an alternative for increasing the bioconversion of GABA.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xiaohua Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Jinheng Fu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Shuixing Wang
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Yuanhong Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Kunpeng Chang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.,Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China. .,Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
16
|
Noda M, Sugimoto S, Hayashi I, Danshiitsoodol N, Fukamachi M, Sugiyama M. A novel structure of exopolysaccharide produced by a plant-derived lactic acid bacterium Lactobacillus paracasei IJH-SONE68. J Biochem 2018; 164:87-92. [DOI: 10.1093/jb/mvy048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/24/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Masafumi Noda
- Department of Probiotic Science for Preventive Medicine
| | | | - Ikue Hayashi
- Faculty of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
17
|
Metabolic engineering of Escherichia coli to produce gamma-aminobutyric acid using xylose. Appl Microbiol Biotechnol 2017; 101:3587-3603. [DOI: 10.1007/s00253-017-8162-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
|
18
|
Zhao A, Hu X, Li Y, Chen C, Wang X. Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production. AMB Express 2016; 6:55. [PMID: 27549808 PMCID: PMC4993724 DOI: 10.1186/s13568-016-0231-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 08/15/2016] [Indexed: 11/26/2022] Open
Abstract
Escherichia coli overexpressing glutamate decarboxylase GadB can produce gamma-aminobutyric acid with addition of monosodium glutamate. The yield and productivity of gamma-aminobutyric acid might be significantly improved if the overexpressed GadB in E. coli cells can be excreted outside, where it can directly transforms monosodium glutamate to gamma-aminobutyric acid. In this study, GadB was fused to signal peptides TorA or PelB, respectively, and overexpressed in E. coli BL21(DE3). It was found that TorA could facilitate GadB secretion much better than PelB. Conditions for GadB secretion and gamma-aminobutyric acid production were optimized in E. coli BL21(DE3)/pET20b-torA-gadB, leading the secretion of more than half of the overexpressed GadB. Fed-batch fermentation for GadB expression and gamma-aminobutyric acid production of BL21(DE3)/pET20b-torA-gadB was sequentially performed in one fermenter; 264.4 and 313.1 g/L gamma-aminobutyric acid were obtained with addition of monosodium glutamate after 36 and 72 h, respectively.
Collapse
|
19
|
Kim DH, Choi Y, Park SS, Kim SY, Han MJ. Attenuating effect of Lactobacillus brevis G101 on the MSG symptom complex in a double-blind, placebo-controlled study. Nutr Res Pract 2015; 9:673-6. [PMID: 26634058 PMCID: PMC4667210 DOI: 10.4162/nrp.2015.9.6.673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND/OBJECTIVES Lactobacillus brevis G101 suppresses the absorption of monosodium glutamate (MSG) from the intestine into the blood in mice. Therefore, the attenuating effect of orally administered G101 on monosodium glutamate (MSG) symptom complex was investigated in humans. MATERIALS/METHODS Capsules (300 mg) containing Lactobacillus brevis G101 (1×1010 CFU/individual) or maltodextrin (placebo) was orally administered in 30 respondents with self-recognized monosodium glutamate (MSG) symptom complex for 5 days and the rice with black soybean sauce containing 6 g MSG (RBSM) was ingested 30 min after the final administration. Thereafter, the MSG symptom complex (rated on a 5-point scale: 1, none; 5, strong) was investigated in a double blind placebo controlled study. The intensity of the MSG symptom complex was significantly reduced in respondents of the G101 intake group (2.87 ± 0.73) compared to that in those treated with the placebo (3.63 ± 1.03) (P = 0.0016). Respondents in the placebo group exhibited more of the various major conditions of the MSG symptom complex than in the G101 intake group. Although there was no significant difference in the appearance time of the MSG symptom complex between subjects orally administered G101 and those administered the placebo, its disappearance in < 3 h was observed in 69.9% of subjects in the G101 treatment group and in 38.0% of subjects in the placebo group (P = 0.0841). CONCLUSIONS Oral administration of Lactobacillus brevis G101 may be able to reduce the intensity of the MSG symptom complex.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | - Yeji Choi
- Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea
| | - Sun-Sung Park
- Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea
| | - Se-Young Kim
- R & D center, CTCBIO Inc., Gyeonggi 445-913, Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea
| |
Collapse
|
20
|
Shan Y, Man CX, Han X, Li L, Guo Y, Deng Y, Li T, Zhang LW, Jiang YJ. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J Dairy Sci 2015; 98:2138-49. [PMID: 25622870 DOI: 10.3168/jds.2014-8698] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/07/2014] [Indexed: 11/19/2022]
Abstract
Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products.
Collapse
Affiliation(s)
- Y Shan
- National Research Center of Dairy Engineering and Technology, Northeast Agricultural University, Harbin 150086, China; Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - C X Man
- National Research Center of Dairy Engineering and Technology, Northeast Agricultural University, Harbin 150086, China; Synergetic Innovation Center of Food Safety and Nutrition, Harbin 150030, China
| | - X Han
- College of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - L Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Y Guo
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Y Deng
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - T Li
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - L W Zhang
- College of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Y J Jiang
- National Research Center of Dairy Engineering and Technology, Northeast Agricultural University, Harbin 150086, China; Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Harbin 150030, China.
| |
Collapse
|
21
|
Zhao A, Hu X, Pan L, Wang X. Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl Microbiol Biotechnol 2014; 99:3191-200. [PMID: 25524701 DOI: 10.1007/s00253-014-6294-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/03/2014] [Indexed: 11/24/2022]
Abstract
Lactobacillus buchneri strain WPZ001 that could efficiently produce gamma-aminobutyric acid was isolated from Chinese fermented sausages. Optimal cultivation conditions for gamma-aminobutyric acid production in L. buchneri WPZ001 were determined, and xylose was found to be the best carbon source. Using xylose as the sole carbon source, 70 g/L gamma-aminobutyric acid was produced by flask fermentation of L. buchneri WPZ001 for 48 h, and the harvested cells could continue to convert monosodium glutamate to gamma-aminobutyric acid in buffer and produce 59 g gamma-aminobutyric acid after eight runs of biotransformation; the total yield of gamma-aminobutyric acid reached 129 g/L. This combination strategy also worked well when the low-cost corncob hydrolysate was used as the sole carbon source, and the yield of gamma-aminobutyric acid reached 117 g/L. The results indicate that L. buchneri WPZ001 has great potential for industrial production of gamma-aminobutyric acid.
Collapse
Affiliation(s)
- Anqi Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | | |
Collapse
|
22
|
Divyashri G, Prapulla SG. An insight into kinetics and thermodynamics of gamma-aminobutyric acid production by Enterococcus faecium CFR 3003 in batch fermentation. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0957-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
23
|
|
24
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
25
|
Shi F, Xie Y, Jiang J, Wang N, Li Y, Wang X. Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH. Enzyme Microb Technol 2014; 61-62:35-43. [PMID: 24910334 DOI: 10.1016/j.enzmictec.2014.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/12/2014] [Accepted: 04/23/2014] [Indexed: 11/30/2022]
Abstract
Glutamate decarboxylase (GAD) transforms l-glutamate into γ-aminobutyric acid (GABA) with the consumption of a proton. GAD derived from lactic acid bacteria exhibits optimum activity at pH 4.0-5.0 and significantly loses activity at near-neutral pH. To broaden the active range of the GAD GadB1 from Lactobacillus brevis Lb85 toward a near-neutral pH, irrational design using directed evolution and rational design using site-specific mutagenesis were performed. For directed evolution of GadB1, a sensitive high-throughput screening strategy based on a pH indicator was established. One improved mutant, GadB1(T17I/D294G/Q346H), was selected from 800 variants after one round of EP-PCR. It exhibited 3.9- and 25.0-fold increase in activity and catalytic efficiency, respectively at pH 6.0. Through site-specific mutagenesis, several improved mutants were obtained, with GadB1(E312S) being the best one. The combined mutant GadB1(T17I/D294G/E312S/Q346H) showed even higher catalytic efficiency, 13.1- and 43.2-fold that of wild-type GadB1 at pH 4.6 and 6.0, respectively. The amount of GABA produced in gadB1(T17I/D294G/Q346H)-, gadB1(E312S)- and gadB1(T17I/D294G/E312S/Q346H)-expressing Corynebacterium glutamicum ATCC 13032 from endogenous l-glutamate increased by 9.6%, 20.3% and 63.9%, respectively. These results indicate that these mutations have beneficial effects on expanding the active pH range and on GABA biosynthesis, suggesting these GadB1 variants as potent candidates for GABA production.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Yilong Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Junjun Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Nannan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. J Ind Microbiol Biotechnol 2013; 40:1285-96. [PMID: 23928903 DOI: 10.1007/s10295-013-1316-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
Abstract
γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.
Collapse
|
27
|
Li H, Qiu T, Liu X, Cao Y. Continuous cultivation of Lactobacillus brevis NCL912 for production of gamma-aminobutyric acid. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0602-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Technological, functional and safety aspects of enterococci in fermented vegetable products: a mini-review. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0363-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
29
|
Separation of gamma-aminobutyric acid from fermented broth. J Ind Microbiol Biotechnol 2011; 38:1955-9. [DOI: 10.1007/s10295-011-0984-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/07/2011] [Indexed: 10/18/2022]
|