1
|
Hao J, Zhou J, Lin P, Wu J. Quantitative comparison and evaluation between aerial and underground parts of Gentiana straminea through simultaneous determination of five major compounds by RP-HPLC. Heliyon 2024; 10:e29232. [PMID: 38660265 PMCID: PMC11040066 DOI: 10.1016/j.heliyon.2024.e29232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Herbal Gentiana straminea Maxim. (Family Gentianaceae), "Ma Hua Jiao" in Chinese, is a commonly used Chinese medicine. Secoiridoids and flavonoids have been identified as the major active components of herbal medicines used in the treatment of hepatitis, rheumatism and many other diseases. It is the overharvesting of the roots of this plant for medicinal purposes that has led to a drastic decline in its population. In the present study, the above and below ground parts of Gentian Bitter Glycine were quantitatively compared and evaluated for the determination of the major active constituents. Five major compounds, loganic acid, swertiamarin, gentiopicroside, sweorside and isoorientin, were extracted by solvent extraction technique and analyzed by Reversed-phase High Performance Liquid Chromatography (RP-HPLC). By analysing the principal components and calculating the composite scores, the results show that the aboveground component in different areas ranked higher compared to the underground component, with the former being able to substitute to some extent for the latter's underground component. Finally, based on hierarchical cluster analysis, we identified the ideal natural growing region for aerial parts of G. straminea distributed on the Qinghai-Tibetan Plateau. The significance of this work is that we can balance the demand for herbs with environmental preservation by selectively picking the aerial parts, which can regrow next year, instead of removing the whole plant. It protects the fragile ecological environment of the Tibetan Plateau and is important for sustainable development.
Collapse
Affiliation(s)
- Junlei Hao
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Jiang Zhou
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Pengcheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Nationalities University, Xining, 810007, China
| |
Collapse
|
2
|
Guo Y, Wang B, Gu L, Yin G, Wang S, Li M, Wang L, Yu XA, Wang T. Discrimination of Radix Astragali from Different Growth Patterns, Origins, Species, and Growth Years by an H 1-NMR Spectrogram of Polysaccharide Analysis Combined with Chemical Pattern Recognition and Determination of Its Polysaccharide Content and Immunological Activity. Molecules 2023; 28:6063. [PMID: 37630314 PMCID: PMC10458787 DOI: 10.3390/molecules28166063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The fraud phenomenon is currently widespread in the traditional Chinese medicine Radix Astragali (RA) market, especially where high-quality RA is substituted with low-quality RA. In this case, focused on polysaccharides from RA, the classification models were established for discrimination of RA from different growth patterns, origins, species, and growth years. 1H Nuclear Magnetic Resonance (H1-NMR) was used to establish the spectroscopy of polysaccharides from RA, which were used to distinguish RA via chemical pattern recognition methods. Specifically, orthogonal partial least squares discriminant analysis (OPLS-DA) and linear discriminant analysis (LDA) were used to successfully establish the classification models for RA from different growth patterns, origins, species, and growth years. The satisfactory parameters and high accuracy of internal and external verification of each model exhibited the reliable and good prediction ability of the developed models. In addition, the polysaccharide content and immunological activity were also tested, which was evaluated by the phagocytic activity of RAW 264.7. And the result showed that growth patterns and origins significantly affected the quality of RA. However, there was no significant difference in the aspects of origins and growth years. Accordingly, the developed strategy combined with chemical information, biological activity, and multivariate statistical method can provide new insight for the quality evaluation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yali Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Guo Yin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Shuhong Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Lijun Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Xie-An Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen 518057, China; (B.W.); (L.G.); (G.Y.); (M.L.)
| |
Collapse
|
3
|
Dong Q, Li Z, Zhang Q, Hu Y, Liang H, Xiong L. Astragalus mongholicus Bunge (Fabaceae): Bioactive Compounds and Potential Therapeutic Mechanisms Against Alzheimer's Disease. Front Pharmacol 2022; 13:924429. [PMID: 35837291 PMCID: PMC9273815 DOI: 10.3389/fphar.2022.924429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Astragalus mongholicus Bunge (Fabaceae) (also known as Astragali radix-AR), a widely used herb by Traditional Chinese Medicine practitioners, possesses a wide range of pharmacological effects, and has been used to treat Alzheimer's disease (AD) historically. Its bioactive compounds are categorized into four families: saponins, flavonoids, polysaccharides, and others. AR's bioactive compounds are effective in managing AD through a variety of mechanisms, including inhibiting Aβ production, aggregation and tau hyperphosphorylation, protecting neurons against oxidative stress, neuroinflammation and apoptosis, promoting neural stem cell proliferation and differentiation and ameliorating mitochondrial dysfunction. This review aims to shed light upon the chemical constituents of AR and the mechanisms underlying the therapeutic effect of each compound in manging AD. Also presented are clinical studies which reported successful management of AD with AR and other herbs. These will be helpful for drug development and clinical application of AR to treat AD.
Collapse
Affiliation(s)
- Qianyu Dong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yueyu Hu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huazheng Liang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Wang Q, Chen W, Yang X, Song Y, Sun X, Tao G, Wang H, Zhao N, Huang Y, Chai E, Tang F. Inhibition of miRNA-1-Mediated Inflammation and Autophagy by Astragaloside IV Improves Lipopolysaccharide-Induced Cardiac Dysfunction in Rats. J Inflamm Res 2022; 15:2617-2629. [PMID: 35494314 PMCID: PMC9045596 DOI: 10.2147/jir.s362368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022] Open
Abstract
Introduction Astragaloside IV (AS-IV) is one of the main active components isolated from the traditional Chinese medicinal herb, Astragalus membranaceus. The present study was designed to investigate whether the regulation of microRNA-1 (miR-1)-mediated inflammation and autophagy contributes to the protective effect of AS-IV against cardiac dysfunction in rats treated with lipopolysaccharides (LPS). Methods Animal model of cardiac dysfunction in rats or cellular model of injured H9c2 heart cell line was established by using LPS. Echocardiography, electron microscopy, enzyme-linked immunosorbent assay, immunofluorescence, quantitative RT-PCR, and Western blotting were used to determine the cardiac function and expression of inflammation- and autophagy-related proteins at both the mRNA and protein levels. Results LPS caused cardiac dysfunction in rats or injury in H9c2 cells and induced inflammation and autophagy. Compared with LPS treatment, AS-IV treatment attenuated cardiac dysfunction or cell injury, accompanied by inhibition of inflammation and autophagy. However, the miR-1 mimics partly abolished the effects of AS-IV. In addition, the effect of the miR-1 inhibitor was similar to that of AS-IV in the LPS model. Further analyses showed that AS-IV treatment decreased the mRNA expression of miR-1 in the heart tissue of rats and H9c2 cells treated with LPS. Conclusion These results suggest that AS-IV attenuated cardiac dysfunction caused by LPS by inhibiting miR-1-mediated inflammation and autophagy, thereby providing a novel mechanism for the protection against cardiac diseases.
Collapse
Affiliation(s)
- Qiuning Wang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning Province, People’s Republic of China
| | - Weiying Chen
- Department of Drug Quality Analysis, Jiuquan Drug Inspection and Testing Center, Jiuquan, Gansu Province, People’s Republic of China
| | - Xuefeng Yang
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning Province, People’s Republic of China
| | - Ying Song
- Cardiovascular Laboratory, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, People’s Republic of China
| | - Xiaowei Sun
- Department of Neurosurgery, China Resources Liaojian Group, General Hospital of Fuxin Mining Group (10th Clinical College of China Medical University), Fuxin, Liaoning Province, People’s Republic of China
| | - Guizhou Tao
- Internal Medicine-Cardiovascular Department, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, People’s Republic of China
| | - Hong Wang
- Allergy and Clinical Immunology Center, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, People’s Republic of China
| | - Nan Zhao
- Allergy and Clinical Immunology Center, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, People’s Republic of China
| | - Yue Huang
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning Province, People’s Republic of China
| | - Erqing Chai
- Neurointerventional Department, Emergency General Hospital, Beijing, People’s Republic of China
- Erqing Chai, Neurointerventional Department, Emergency General Hospital, Beijing, People’s Republic of China, Email
| | - Futian Tang
- Department of Cardiovascular Disease and Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China
- Correspondence: Futian Tang, Department of Cardiovascular Disease and Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu Province, People’s Republic of China, Email
| |
Collapse
|
5
|
Chien MY, Yang CM, Chen CH. Effects of Physical Properties and Processing Methods on Astragaloside IV and Flavonoids Content in Astragali radix. Molecules 2022; 27:575. [PMID: 35056893 PMCID: PMC8778167 DOI: 10.3390/molecules27020575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the effects of the physical properties (diameter size, powder particle size, composition of bark- and wood-tissue, and turnover rate) and processing methods on the content of active ingredients in Astragali radix (AR), a popular Chinese herbal medicine. The astragaloside IV and flavonoid contents increased with decreasing diameter size. Bark-tissue had significantly higher astragaloside IV and formononetin content than that in the wood-tissue. As a higher proportion of bark-tissue is associated with decreasing diameter, a strong correlation was also shown between bark- to wood-tissue ratio and active ingredients' content. Furthermore, an increase in astragaloside IV content was observed in thin powder as compared to coarse powder ground from the whole root. However, this association between active ingredients' content and powder particle size was abolished when isolating bark- and wood-tissue individually. Moreover, AR stir-frying with refined honey, a typical processing method of AR, increased formononetin content. The turnover rate of active constituents upon decoction ranged from 61.9-81.4%. Assessing the active constituent contents using its physical properties and processing methods allows for a more comprehensive understanding of optimizing and strengthening the therapeutic potentials of AR used in food and herbal supplements.
Collapse
Affiliation(s)
- Mei-Yin Chien
- Ko Da Pharmaceutical Co., Ltd., Taoyuan 324, Taiwan; (M.-Y.C.); (C.-M.Y.)
| | - Chih-Min Yang
- Ko Da Pharmaceutical Co., Ltd., Taoyuan 324, Taiwan; (M.-Y.C.); (C.-M.Y.)
| | - Chao-Hsiang Chen
- Ko Da Pharmaceutical Co., Ltd., Taoyuan 324, Taiwan; (M.-Y.C.); (C.-M.Y.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
6
|
Zhang J, Lin Y, Wei X, Li Z, Li R. Study of the Unique Characteristics of Multi-Elements of the Wild Astragali Radix from Shanxi Province by Inductively Coupled Plasma Mass Spectrometry. J AOAC Int 2021; 105:603-611. [PMID: 34747478 DOI: 10.1093/jaoacint/qsab144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Astragali Radix (AR) is widely used because of its dual use in medicine and food. Wild Astragali Radix from Hunyuan county of Shanxi Province in China is accepted as a geo-authentic medicine with high quality and good medicinal effects. Multi-elements of Astragali Radix partially reflect its efficacy and safety. However, there is no systemic research about the elemental analysis of geo-authentic Astragali Radix until now. OBJECTIVE In this paper, multi-elemental profiling of Astragali Radix from Gansu, Jilin, Inner Mongolia, Shaanxi and Shanxi provinces in China was implemented. METHODS A microwave digestion coupled with ICP-MS, principle component analysis and partial-least square-discriminate analysis were used for the analysis of unique elemental accumulation ability of Shanxi wild-type. RESULTS For 53 stably detected elements, the contents of most elements (Ba, Cs, Ga, La, Pr and so on) were significantly higher while some others (Cd, Cu, P, W and Zn) were significantly lower in wild Astragali Radix from Shanxi than those of the samples from Gansu, Jilin, Inner Mongolia, Shaanxi provinces and the cultivated samples from Shanxi. After binary logistic regression, combinational variable Ba-P was found to be a good marker to identify wild Astragali Radix of Shanxi Province from the samples with other origins, and the total positive prediction probability of the test samples from both market and their original field could reach 93.8% through external validation using the model. CONCLUSIONS Multi-elemental analysis coupled with PCA, PLS-DA, nonparametric analysis and binary logistic regression can be a good tool for the identification of wild Astragali Radix from Shanxi Province. HIGHLIGHTS An ICP-MS method was developed and validated for multi-elements. Fifty-three elements in Astragali Radix from differential origins were compared. The wild Astragali Radix from Shanxi had unique elemental characteristics. Combinational variable Ba-P is a good marker to identify wild-type from Shanxi.
Collapse
Affiliation(s)
- Junjie Zhang
- Scientific Instrument Center, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006 People's Republic of China
| | - Youming Lin
- School of Chemistry and Materials Sciences, Shaanxi Normal University, 199 Chang'an South Road, Xi'an, Shaanxi, 710062 People's Republic of China
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006 People's Republic of China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006 People's Republic of China
| | - Rongrong Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006 People's Republic of China
| |
Collapse
|
7
|
Gong AGW, Duan R, Wang HY, Kong XP, Dong TTX, Tsim KWK, Chan K. Evaluation of the Pharmaceutical Properties and Value of Astragali Radix. MEDICINES (BASEL, SWITZERLAND) 2018; 5:E46. [PMID: 29883402 PMCID: PMC6023478 DOI: 10.3390/medicines5020046] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/03/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Astragali Radix (AR), a Chinese materia medica (CMM) known as Huangqi, is an important medicine prescribed in herbal composite formulae (Fufang) by Traditional Chinese medicine (TCM) practitioners for thousands of years. According to the literature, AR is suggested for patients suffering from “Qi”- and “Blood”-deficiencies, and its clinical effects are reported to be related to anti-cancer cell proliferation, anti-oxidation, relief of complications in cardiovascular diseases, etc. The underlying cell signaling pathways involved in the regulation of these various diseases are presented here to support the mechanisms of action of AR. There are two botanical sources recorded in China Pharmacopoeia (CP, 2015): Astragalus membranaceus (Fisch.) Bge. Var. mongohlicus, (Bge.) Hsiao, and Astragalus membranaceus (Fisch.) Bge. (Fam. Leguminosae), whose extracts of dried roots are processed via homogenization-assisted negative pressure cavitation extraction. Geographic factors and extraction methods have impacts on the pharmaceutical and chemical profiles of AR. Therefore, the levels of the major bioactive constituents of AR, including polysaccharides, saponins, and flavonoids, may not be consistent in different batches of extract, and the pharmaceutical efficacy of these bioactive ingredients may vary depending on the source. Therefore, the present review mainly focuses on the consistency of the available sources of AR and extracts and on the investigation of the biological functions and mechanisms of action of AR and of its major bioactive constituents. Furthermore, it will also include a discussion of the most popular AR composite formulae to further elucidate their chemical and biological profiles and understand the pharmaceutical value of AR.
Collapse
Affiliation(s)
- Amy G W Gong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China.
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Huai Y Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Xiang P Kong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 100044, China.
| | - Kelvin Chan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen 518057, China.
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3 AF, UK.
- National Institute of Complementary Medicine, Western Sydney University, Sydney, NSW 2560, Australia.
- Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
8
|
Li L, Zheng S, Brinckmann JA, Fu J, Zeng R, Huang L, Chen S. Chemical and genetic diversity of Astragalus mongholicus grown in different eco-climatic regions. PLoS One 2017; 12:e0184791. [PMID: 28945770 PMCID: PMC5612462 DOI: 10.1371/journal.pone.0184791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/30/2017] [Indexed: 11/18/2022] Open
Abstract
Astragalus mongholicus Bunge (Fabaceae) is an important plant source of the herbal drug known as Radix Astragali, which is used worldwide as a medicinal ingredient and a component of food supplement. Russian Federation, Mongolia, Kazakhstan, and China are the main natural distribution areas of A. mongholicus in the world. However, the quality of medicinal plant varies among different locations. As for A. mongholicus, limited literature focused on its biodiversity mechanism. Here, we combined the chemometric analysis of chemical components with genetic variation, as well as climatic and edaphic traits, to reveal the biodiversity mechanism of A. mongholicus. Results showed that the detected chemical, genetic and climatic traits comprehensively contributed to the quality diversity of A. mongholicus. The eight main chemical components, as well as the inorganic elements of P, B and Na were all significant chemical factors. The precipitation and sunshine duration were the main distinguishing climatic factors. The inorganic elements As, Mn, P, Se and Pb were the distinguishing edaphic factors. The systematic method was firstly established for this medicinal plant in order to illustrate the formation of diversity in terms of quality, and provide scientific evidence for geographic indications and climatic adaptation in production and in the clinical application of herbal medicinal plants.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sihao Zheng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Josef A. Brinckmann
- Sustainability Department, Traditional Medicinals, Sebastopol, California, United States of America
| | - Juan Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Zeng
- Southwest University for Nationalities, Chengdu, China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Characterization of root-associated microbiota in medicinal plants Astragalus membranaceus and Astragalus mongholicus. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1285-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Han R, Tang F, Lu M, Xu C, Hu J, Mei M, Wang H. Astragalus polysaccharide ameliorates H2O2-induced human umbilical vein endothelial cell injury. Mol Med Rep 2017; 15:4027-4034. [PMID: 28487940 PMCID: PMC5436204 DOI: 10.3892/mmr.2017.6515] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Endothelial dysfunction caused by reactive oxygen species (ROS) has been implicated in numerous cardiovascular diseases. Astragalus polysaccharide (APS), an important bioactive component extracted from the Chinese herb Astragalus membranaceus, has been widely used for the treatment of cardiovascular disease. The present study aimed to investigate the effects of APS on hydrogen peroxide (H2O2)-induced human umbilical vein endothelial cell (HUVEC) injury. Following treatment with 400 µM H2O2 for 24 h, cell viability was decreased and apoptosis was increased. However, pretreatment with APS for 1 h significantly attenuated H2O2-induced injury in HUVECs. In addition, APS decreased intracellular ROS levels, increased the protein expression of endothelial nitric oxide synthase and copper-zinc superoxide dismutase, elevated intracellular cyclic guanosine monophosphate (an activity marker for nitric oxide) levels and restored the mitochondrial membrane potential, compared with cells treated with H2O2 only. In conclusion, the results of the present study suggested that APS may protect HUVECs from injury induced by H2O2 via increasing the cell antioxidant capacity and nitric oxide (NO) bioavailability, which may contribute to the improvement of the imbalance between ROS and NO levels.
Collapse
Affiliation(s)
- Ronghui Han
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Chonghua Xu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jin Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Meng Mei
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Drug Research Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hongxin Wang
- Department of Pharmacology, Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Drug Research Institute, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
11
|
Integrated analysis for identifying radix astragali and its adulterants based on DNA barcoding. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:843923. [PMID: 25246939 PMCID: PMC4160622 DOI: 10.1155/2014/843923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022]
Abstract
Radix Astragali is a popular herb used in traditional Chinese medicine for its proimmune and antidiabetic properties. However, methods are needed to help distinguish Radix Astragali from its varied adulterants. DNA barcoding is a widely applicable molecular method used to identify medicinal plants. Yet, its use has been hampered by genetic distance, base variation, and limitations of the bio-NJ tree. Herein, we report the validation of an integrated analysis method for plant species identification using DNA barcoding that focuses on genetic distance, identification efficiency, inter- and intraspecific variation, and barcoding gap. We collected 478 sequences from six candidate DNA barcodes (ITS2, ITS, psbA-trnH, rbcL, matK, and COI) from 29 species of Radix Astragali and adulterants. The internal transcribed spacer (ITS) sequence was demonstrated as the optimal barcode for identifying Radix Astragali and its adulterants. This new analysis method is helpful in identifying Radix Astragali and expedites the utilization and data mining of DNA barcoding.
Collapse
|
12
|
Zheng XF, Tian JS, Liu P, Xing J, Qin XM. Analysis of the restorative effect of Bu-zhong-yi-qi-tang in the spleen-qi deficiency rat model using (1)H-NMR-based metabonomics. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:912-920. [PMID: 24333365 DOI: 10.1016/j.jep.2013.12.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/23/2013] [Accepted: 12/01/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-zhong-yi-qi-tang (BT) is a classical formula for the treatment of spleen-qi descending, visceroptosis with hyposplenic qi, uterine prolapse, and rectal prolapse due to chronic diarrhea in traditional Chinese medicine (TCM) and has been identified as an effective drug for the treatment of TCM spleen-qi deficiency in clinical practice. The present study aimed to investigate the restorative effect and the potential mechanisms of Bu-zhong-yi-qi-tang in a rat spleen-qi deficiency model using (1)H-NMR-based metabonomics. MATERIALS AND METHODS The rat spleen-qi deficiency model was established as follows: oral administration of Radix Rhei extract (equivalent to 10g/kg body weight of the crude drug), loaded swimming, and starvation for 24h. Each of these treatments was administered consecutively every three days. Sixty male SD rats were randomly divided into five groups, and three of the groups received a different oral dose of the aqueous extract of Bu-zhong-yi-qi-tang during the last seven days of the three-week experimental period. The body weight and motor behavior of the rats were measured and recorded once a week. The endogenous metabolites in the plasma were analyzed using NMR in conjunction with multivariate and statistical techniques. In addition, the liver and spleen were removed and weighed. RESULTS All of the rats in the spleen-qi deficiency group presented pasty loose stools, inactiveness, grouping, a decrease in swimming endurance, and lackluster, loose, and disorderly behavior in addition to a significant decrease in body weight, spleen weight, and liver weight. In contrast, the abovementioned demonstrations were reversed to a certain extent in the rats treated with Bu-zhong-yi-qi-tang compared with the model group (p<0.05, p<0.01). A significant separation was determined between the control and model groups in the PCA score plot, which indicates that the spleen-qi deficiency model was successfully duplicated. The changes in the levels of endogenous metabolites in the plasma included lower levels of valine, leucine, and O-acetyl-glycoprotein and a higher concentration of lactate in the spleen-qi deficiency group compared with the control group. Treatment with Bu-zhong-yi-qi-tang at least partially returned the levels of these metabolites to the normal levels. CONCLUSIONS The restorative effects of Bu-zhong-yi-qi-tang in rats with spleen-qi deficiency were confirmed, and four endogenous metabolites were identified as potential biomarkers of the symptoms of spleen-qi deficiency and most likely play roles in the changes observed in certain metabolic pathways, such as the energy, protein, and glycolytic metabolisms.
Collapse
Affiliation(s)
- Xiao-Fen Zheng
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| | - Peng Liu
- Shanxi Pharmaceutical College, Taiyuan 030031, PR China
| | - Jie Xing
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|
13
|
Wang T, Xuan X, Li M, Gao P, Zheng Y, Zang W, Zhao G. Astragalus saponins affect proliferation, invasion and apoptosis of gastric cancer BGC-823 cells. Diagn Pathol 2013; 8:179. [PMID: 24152941 PMCID: PMC3818446 DOI: 10.1186/1746-1596-8-179] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 10/22/2013] [Indexed: 12/19/2022] Open
Abstract
Background Astragalus memebranaceus is a traditional Chinese herbal medicine used in treatment of common cold, diarrhea, fatigue, anorexia and cardiac diseases. Recently, there are growing evidences that Astragalus extract may be a potential anti-tumorigenic agent. Some research showed that the total saponins obtained from Astragalus membranaceus possess significant antitumorigenic activity. Gastric cancer is one of the most frequent cancers in the world, almost two-thirds of gastric cancer cases and deaths occur in less developed regions. But the effect of Astragalus membranaceus on proliferation, invasion and apoptosis of gastric cancer BGC-823 cells remains unclear. Methods Astragalus saponins were extracted. Cells proliferation was determined by CCK-8 assay. Cell cycle and apoptosis were detected by the flow cytometry. Boyden chamber was used to evaluate the invasion and metastasis capabilities of BGC-823 cells. Tumor growth was assessed by subcutaneous inoculation of cells into BALB/c nude mice. Results The results demonstrated that total Astragalus saponins could inhibit human gastric cancer cell growth both in vitro and in vivo, in additional, Astragalus saponins deceased the invasion ability and induced the apoptosis of gastric cancer BGC-823 cells. Conclusions Total Astragalus saponins inhibited human gastric cancer cell growth, decreased the invasion ability and induced the apoptosis. This suggested the possibility of further developing Astragalus as an alternative treatment option, or perhaps using it as adjuvant chemotherapeutic agent in gastric cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiao Zang
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China.
| | | |
Collapse
|
14
|
Spatial variation profiling of four phytochemical constituents in Gentiana straminea (Gentianaceae). J Nat Med 2013; 68:38-45. [DOI: 10.1007/s11418-013-0763-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/05/2013] [Indexed: 10/26/2022]
|
15
|
Du HW, Zhao XL, Zhang AH, Yao L, Zhang YY. Rapid Separation, Identification and Analysis of Astragalus membranaceus Fisch Using Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr Sci 2013; 52:226-31. [DOI: 10.1093/chromsci/bmt016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Feng B, Jin J, Wang C, Song J, Yang G, Zeng A. Analysis and retention behavior of isoflavone glycosides and aglycones in Radix Astragali by HPLC with hydroxypropyl-β-cyclodextrin as a mobile phase additive. J Sep Sci 2012; 35:3469-76. [DOI: 10.1002/jssc.201200389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/15/2012] [Accepted: 08/30/2012] [Indexed: 02/04/2023]
Affiliation(s)
- Bianling Feng
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| | - Juqing Jin
- School of Science; Xi'an Jiaotong University; Xi'an P. R. China
| | - Changhe Wang
- Shaanxi Institute for Food and Drug Control; Xi'an P. R. China
| | - Jie Song
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| | - Guangde Yang
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| | - Aiguo Zeng
- School of Medicine; Xi'an Jiaotong University; Xi'an P. R. China
| |
Collapse
|
17
|
Hong MJ, Ko EB, Park SK, Chang MS. Inhibitory effect of Astragalus membranaceus root on matrix metalloproteinase-1 collagenase expression and procollagen destruction in ultraviolet B-irradiated human dermal fibroblasts by suppressing nuclear factor kappa-B activity. J Pharm Pharmacol 2012; 65:142-8. [PMID: 23215697 DOI: 10.1111/j.2042-7158.2012.01570.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The root of Astragalus membranaceus, regarded as a tonic in traditional Korean medicine, has been prescribed for long periods to treat chronic illness by boosting the immune system. Ultraviolet (UV) irradiation causes damage to skin connective tissue by degrading collagen, which is a major structural component of the extracellular matrix. Such damage is considered to be a cause of the wrinkling observed in premature ageing of the skin. This study has investigated the photo-protective effect of A. membranaceus on UVB radiation-induced activation of nuclear factor kappa-B (NF-κB) activity in human dermal fibroblasts. METHODS HS68 fibroblast cells cultured with various concentrations of A. membranaceus were exposed to UVB (40 mJ/cm²). Activation of NF-κB P65 and expression of matrix metalloproteinase-1 (MMP-1) and type 1 procollagen were measured by Western blotting. Translocation of NF-κB P65 and MMP-1 regulation were also examined by immunocytochemistry. KEY FINDINGS Western blotting and immunocytochemistry results showed that A. membranaceus inhibited UVB-induced translocation of NF-κB P65 and MMP-1 expression. The data suggested that A. membranaceus restored type 1 procollagen synthesis by inhibiting NF-κB P65 activity and MMP-1 expression in UVB-exposed human dermal fibroblasts. CONCLUSION A. membranaceus is a candidate for use in skin protection from UVB-induced skin inflammation and photoageing.
Collapse
Affiliation(s)
- Min Jung Hong
- Department of Prescriptionology, College of Oriental Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | |
Collapse
|