1
|
Wang S, Li C, Zhang L, Sun B, Cui Y, Sang F. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification. Bioorg Med Chem 2023; 93:117454. [PMID: 37659218 DOI: 10.1016/j.bmc.2023.117454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Bacterial infection, which is still one of the leading causes of death in humans, poses an enormous threat to the worldwide public health system. Antibiotics are the primary medications used to treat bacterial diseases. Currently, the discovery of antibiotics has reached an impasse, and due to the abuse of antibiotics resulting in bacterial antibiotic resistance, researchers have a critical desire to develop new antibacterial agents in order to combat the deteriorating antibacterial situation. Natural chalcones, the flavonoids consisting of two phenolic rings and a three-carbon α, β-unsaturated carbonyl system, possess a variety of biological and pharmacological properties, including anti-cancer, anti-inflammatory, antibacterial, and so on. Due to their potent antibacterial properties, natural chalcones possess the potential to become a new treatment for infectious diseases that circumvents existing antibiotic resistance. Currently, the majority of research on natural chalcones focuses on their synthesis, biological and pharmacological activities, etc. A few studies have been conducted on their antibacterial activity and mechanism. Therefore, this review focuses on the antibacterial activity and mechanisms of seventeen natural chalcones. Firstly, seventeen natural chalcones have been classified based on differences in antibacterial mechanisms. Secondly, a summary of the isolation and biological activity of seventeen natural chalcones was provided, with a focus on their antibacterial activity. Thirdly, the antibacterial mechanisms of natural chalcones were summarized, including those that act on bacterial cell membranes, biological macromolecules, biofilms, and quorum sensing systems. This review aims to lay the groundwork for the discovery of novel antibacterial agents based on chalcones.
Collapse
Affiliation(s)
- Sinan Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Liyan Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Bingxia Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
2
|
Kirindage KGIS, Jayasinghe AMK, Han EJ, Jee Y, Kim HJ, Do SG, Fernando IPS, Ahn G. Fucosterol Isolated from Dietary Brown Alga Sargassum horneri Protects TNF-α/IFN-γ-Stimulated Human Dermal Fibroblasts via Regulating Nrf2/HO-1 and NF-κB/MAPK Pathways. Antioxidants (Basel) 2022; 11:antiox11081429. [PMID: 35892631 PMCID: PMC9394315 DOI: 10.3390/antiox11081429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Sargassum horneri is a well-known edible brown alga that is widely abundant in the sea near China, Korea, and Japan and has a wide range of bioactive compounds. Fucosterol (FST), which is a renowned secondary metabolite in brown algae, was extracted from S. horneri to 70% ethanol, isolated via high-performance liquid chromatography (HPLC), followed by the immiscible liquid-liquid separation, and its structure was confirmed by NMR spectroscopy. The present study was undertaken to investigate the effects of FST against oxidative stress, inflammation, and its mechanism of action in tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated human dermal fibroblast (HDF). FST was biocompatible with HDF cells up to the 120 μM dosage. TNF-α/IFN-γ stimulation significantly decreased HDF viability by notably increasing reactive oxygen species (ROS) production. FST dose-dependently decreased the intracellular ROS production in HDFs. Western blot analysis confirmed a significant increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) involvement in FST-treated HDF cells. In addition, the downregulation of inflammatory mediators, molecules related to connective tissue degradation, and tissue inhibitors of metalloproteinases were identified. TNF-α/IFN-γ stimulation in HDF cells increased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) mediators, and its phosphorylation was reduced with the treatment of FST in a dose-dependent manner. Results obtained from western blot analysis of the NF-κB nuclear translocation were supported by immunocytochemistry results. Collectively, the outcomes suggested that FST significantly upregulates the Nrf2/HO-1 signaling and regulates NF-κB/MAPK signaling pathways to minimize the inflammatory responses in TNF-α/IFN-γ-stimulated HDF cells.
Collapse
Affiliation(s)
| | | | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.)
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Hyun-Jin Kim
- Research and Development Center, Naturetch Co., Ltd., Cheonnam-si 31257, Korea; (H.-J.K.); (S.G.D.)
| | - Sun Gil Do
- Research and Development Center, Naturetch Co., Ltd., Cheonnam-si 31257, Korea; (H.-J.K.); (S.G.D.)
| | | | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (K.G.I.S.K.); (A.M.K.J.); (E.-J.H.)
- Correspondence: (I.P.S.F.); (G.A.)
| |
Collapse
|
3
|
Lee H, Hong Y, Kim M. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin. Int J Mol Sci 2021; 22:ijms222212489. [PMID: 34830368 PMCID: PMC8624050 DOI: 10.3390/ijms222212489] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Skin aging is a complex process influenced by intrinsic and extrinsic factors. Together, these factors affect the structure and function of the epidermis and dermis. Histologically, aging skin typically shows epidermal atrophy due to decreased cell numbers. The dermis of aged skin shows decreased numbers of mast cells and fibroblasts. Fibroblast senescence contributes to skin aging by secreting a senescence-associated secretory phenotype, which decreases proliferation by impairing the release of essential growth factors and enhancing degradation of the extracellular matrix through activation of matrix metalloproteinases (MMPs). Several molecular mechanisms affect skin aging including telomere shortening, oxidative stress and MMP, cytokines, autophagic control, microRNAs, and the microbiome. Accumulating evidence on the molecular mechanisms of skin aging has provided clinicians with a wide range of therapeutic targets for treating aging skin.
Collapse
Affiliation(s)
| | | | - Miri Kim
- Correspondence: ; Tel.: +82-3779-1056
| |
Collapse
|
4
|
Kwak AW, Lee MJ, Lee MH, Yoon G, Cho SS, Chae JI, Shim JH. The 3-deoxysappanchalcone induces ROS-mediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153564. [PMID: 33895649 DOI: 10.1016/j.phymed.2021.153564] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The 3-deoxysappanchalcone (3-DSC), a chemical separated from Caesalpinia sappan L, has been substantiated to display anti-inflammatory, anti-influenza, and anti-allergy activities according to previous studies. However, the underlying mechanisms of action on esophageal cancer remain unknown. PURPOSE The present research aims to survey the action mechanisms of 3-DSC in esophageal squamous cell carcinoma (ESCC) cells in vitro. METHODS Evaluation of cytotoxicity was determined by MTT tetrazolium salt assay and soft agar assay. Cell cycle distribution, apoptosis induction, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), and multi-caspases activity were appreciated by Muse™ Cell Analyzer. The expressions of cell cycle- and apoptosis-related proteins were presented using Western blotting. RESULTS 3-DSC blocked cell growth and colony formation ability in a concentration-dependent manner and invoked apoptosis, G2/M cell cycle arrest, ROS production, MMP depolarization, and multi-caspase activity. Furthermore, Western blotting results demonstrated that 3-DSC upregulated the expression of phospho (p)-c-jun NH2-terminal kinases (JNK), p-p38, cell cycle regulators, pro-apoptotic proteins, and endoplasmic reticulum (ER) stress-related proteins whereas downregulated the levels of anti-apoptotic proteins and cell cycle promoters. The effects of 3-DSC on ROS induction were counteracted by pretreatment with N-acetyl-L-cysteine (NAC). Also, our results indicated that p38 (SB203580) and JNK (SP600125) inhibitor slightly inhibited 3-DSC-induced apoptosis. These results showed that 3-DSC-related G2/M phase cell cycle arrest and apoptosis by JNK/p38 MAPK signaling pathway in ESCC cells were mediated by ROS. CONCLUSION ROS generation by 3-DSC in cancer cells could be an attractive strategy for apoptosis of cancer cells by inducing cell cycle arrest, ER stress, MMP loss, multi-caspase activity, and JNK/p38 MAPK pathway. Our findings suggest that 3-DSC is a promising novel therapeutic candidate for both prevention and treatment of esophageal cancer.
Collapse
Affiliation(s)
- Ah-Won Kwak
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Myeoung-Jun Lee
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeonnam 58245, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea; The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, PR China; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
5
|
Fernando IPS, Dias MKHM, Madusanka DMD, Kim HS, Han EJ, Kim MJ, Seo MJ, Ahn G. Effects of (-)-Loliolide against Fine Dust Preconditioned Keratinocyte Media-Induced Dermal Fibroblast Inflammation. Antioxidants (Basel) 2021; 10:antiox10050675. [PMID: 33925954 PMCID: PMC8144948 DOI: 10.3390/antiox10050675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
At present air pollution in parts of East Asia is at an alarming level due to elevated levels of fine dust (FD). Other than pulmonary complications, FD was found to affect the pathogenesis of ROS-dependent inflammatory responses via penetrating barrier-disrupted skin, leading to degradation of extracellular matrix components through the keratinocyte-fibroblast axis. The present study discloses the evaluation of human dermal fibroblast (HDF) responses to FD preconditioned human keratinocyte media (HPM) primed without and with (-)-loliolide (HTT). HPM-FD treatment increased the ROS level in HDFs and activated mitogen-activated protein kinase-derived nuclear factor (NF)-κB inflammatory signaling pathways with a minor reduction of viability. The above events led to cell differentiation and production of matrix metalloproteinases (MMP), increasing collagenase and elastase activity despite the increase of tissue inhibitors of metalloproteinases (TIMP). Media from HTT primed keratinocytes stimulated with FD indicated ameliorated levels of MMPs, inflammatory cytokines, and chemokines in HDFs with suppressed collagenase and elastase activity. Present observations help to understand the factors that affect HDFs in the microenvironment of FD exposed keratinocytes and the therapeutic role of HTT as a suppressor of skin aging. Further studies using organotypic skin culture models could broaden the understanding of the effects of FD and the therapeutic role of HTT.
Collapse
Affiliation(s)
| | | | | | - Hyun-Soo Kim
- National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33662, Korea;
| | - Eui-Jeong Han
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Ju Kim
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
| | - Min-Jeong Seo
- Freshwater Biosources Utilization Bureau, Bioresources Industrialization Support Division, Nakdong-gang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
- Correspondence: (M.-J.S.); (G.A.); Tel.: +82-54-530-0854 (M.-J.S.); +82-61-659-7213 (G.A.)
| | - Ginnae Ahn
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Korea;
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea; (M.K.H.M.D.); (D.M.D.M.); (E.-J.H.); (M.-J.K.)
- Correspondence: (M.-J.S.); (G.A.); Tel.: +82-54-530-0854 (M.-J.S.); +82-61-659-7213 (G.A.)
| |
Collapse
|
6
|
Bang JS, Jin YJ, Choung SY. Low molecular polypeptide from oyster hydrolysate recovers photoaging in SKH-1 hairless mice. Toxicol Appl Pharmacol 2019; 386:114844. [PMID: 31785243 DOI: 10.1016/j.taap.2019.114844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
When the human skin is chronically exposed to external stimuli such as ultraviolet (UV) radiation, the skin tissue suffers damage and the structure of the extracellular matrix (ECM) in the skin is disrupted. This eventually causes symptoms such as wrinkles loss of elasticity, skin sagging, and skin cancer. We previously found that hydrolysate extracted from pacific oyster (Crassostrea gigas) is effective in improving wrinkle formation. In this study, we selected a pentapeptide that was expected to have the most wrinkle reduction effect among the various peptides in oyster hydrolysate through preliminary in vitro screening and examined whether the pentapeptide derived from oyster hydrolysate (OHP) is effective in reducing wrinkles in vivo. We investigated the wrinkle-reducing effect of the OHP through 18-week SKH-1 hairless mice model. Our results showed that the OHP reduces wrinkles lengths, depths, and epidermal thickness which were increased by UVB radiation, and restores the amount of collagen. The OHP recovered the activity of antioxidant enzymes and regulated the expression of proinflammatory cytokines. We also found that OHP increases the expression of type I collagen through stimulating the TGFβ/Smad signaling pathway and inhibits the MMPs expression by regulating the MAPK/AP-1 signaling pathway. This study has shown that the OHP plays crucial roles in collagen production and wrinkle reduction in hairless mice and we proved the possibility of the OHP as a component for inhibiting wrinkle formation which was induced by photoaging.
Collapse
Affiliation(s)
- Joon Sok Bang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yu Jung Jin
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Hyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
7
|
Na J, Bak DH, Im SI, Choi H, Hwang JH, Kong SY, No YA, Lee Y, Kim BJ. Anti‑apoptotic effects of glycosaminoglycans via inhibition of ERK/AP‑1 signaling in TNF‑α‑stimulated human dermal fibroblasts. Int J Mol Med 2018; 41:3090-3098. [PMID: 29436595 DOI: 10.3892/ijmm.2018.3483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/07/2018] [Indexed: 11/05/2022] Open
Abstract
It has been established that glycosaminoglycans (GAGs) serve an important role in protecting the skin against the effects of aging. A previous clinical trial by our group identified that a cream containing GAGs reduced wrinkles and increased skin elasticity, dermal density and skin tightening. However, the exact molecular mechanism underlying the anti‑aging effect of GAGs has not yet been fully elucidated. The present study assessed the influence of GAGs on cell viability, collagen synthesis and collagen synthesis‑associated signaling pathways in tumor necrosis factor‑α (TNF‑α)‑stimulated human dermal fibroblasts (HDFs); an in vitro model of aging. The results demonstrated that GAGs restored type I collagen synthesis and secretion by inhibiting extracellular signal‑regulated kinase (ERK) signaling in TNF‑α‑stimulated HDFs. However, GAGs did not activate c‑jun N‑terminal kinase or p38. It was determined that GAGs suppressed the phosphorylation of downstream transcription factors of ERK activation, activator protein‑1 (AP‑1; c‑fos and c‑jun), leading to a decrease in matrix metalloproteinase‑1 (MMP‑1) levels and the upregulation of tissue inhibitor of metalloproteinase‑1 in TNF‑α‑stimulated HDFs. In addition, GAGs attenuated the apoptosis of HDFs induced by TNF‑α. The current study revealed a novel mechanism: GAGs serve a crucial role in ameliorating TNF‑α‑induced MMP‑1 expression, which causes type I collagen degeneration via the inactivation of ERK/AP‑1 signaling in HDFs. The results of the present study indicate the potential application of GAGs as effective anti‑aging agents that induce wrinkle reduction.
Collapse
Affiliation(s)
- Jungtae Na
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Dong-Ho Bak
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Song I Im
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Hyangtae Choi
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Jung Hyun Hwang
- Taeyoung Co., Ltd., Seongnam, Gyeonggi 13467, Republic of Korea
| | - Su Yeon Kong
- Taeyoung Co., Ltd., Seongnam, Gyeonggi 13467, Republic of Korea
| | - Yeon A No
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Yonghee Lee
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung‑Ang University, Seoul 06973, Republic of Korea
| |
Collapse
|
8
|
Costa A, Facchini G, Pinheiro ALTA, da Silva MS, Bonner MY, Arbiser J, Eberlin S. Honokiol protects skin cells against inflammation, collagenolysis, apoptosis, and senescence caused by cigarette smoke damage. Int J Dermatol 2017; 56:754-761. [PMID: 28229451 DOI: 10.1111/ijd.13569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/22/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Pollution, especially cigarette smoke, is a major cause of skin damage. OBJECTIVES To assess the effects of the small molecule polyphenol, honokiol, on reversing cigarette smoke-induced damage in vitro to relevant skin cells. METHODS Keratinocytes (HaCat) cultures were exposed to cigarette smoke and, after 48 hours, IL-1α and IL-8 were measured in cell supernatants. Moreover, TIMP-2 production, apoptosis rate, and senescence β-galactosidase expression were evaluated in primary human foreskin fibroblasts (HFF-1) cultures. RESULTS Honokiol at 10 μm reduced IL-1α production by 3.4 folds (P < 0.05) and at 10 and 20 μm reduced IL-8 by 23.9% and 53.1% (P < 0.001), respectively, in HaCat keratinocytes. In HFF-1, honokiol restored TIMP-2 production by 96.9% and 91.9% (P < 0.001), respectively, at 10 and 20 μm, as well as reduced apoptosis by 47.1% (P < 0.001) and 41.3% (P < 0.01), respectively. Finally, honokiol reduced senescence-associated β-galactosidase expression in HFF-1. CONCLUSION Honokiol protects both HFF-1 and HaCat against cigarette smoke-induced inflammation, collagenolysis, apoptosis, and senescence.
Collapse
Affiliation(s)
- Adilson Costa
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Gustavo Facchini
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| | | | - Michelle S da Silva
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| | - Michael Y Bonner
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Jack Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta Veterans Administration Medical Center, Winship Cancer Institute, Atlanta, GA, USA
| | - Samara Eberlin
- KOLderma Clinical Trials Institute - Kosmoscience Group, Campinas, SP, Brazil
| |
Collapse
|
9
|
Kim YE, Choi HC, Lee IC, Yuk DY, Lee H, Choi BY. 3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling. Biomol Ther (Seoul) 2016; 24:572-580. [PMID: 27795451 PMCID: PMC5098535 DOI: 10.4062/biomolther.2016.183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 11/07/2022] Open
Abstract
3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of β-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of WNT/β-catenin and STAT signaling.
Collapse
Affiliation(s)
- Young Eun Kim
- Cosmecutical R&D Center, HP&C, Seowon University, Cheongju 28674, Republic of Korea
| | - Hyung Chul Choi
- Cosmecutical R&D Center, HP&C, Seowon University, Cheongju 28674, Republic of Korea
| | - In-Chul Lee
- Department of Cosmetic Science & Engineering, Seowon University, Cheongju 28674, Republic of Korea
| | - Dong Yeon Yuk
- Cosmecutical R&D Center, HP&C, Seowon University, Cheongju 28674, Republic of Korea
| | - Hyosung Lee
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju 28674, Republic of Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju 28674, Republic of Korea
| |
Collapse
|
10
|
Kim KE, Cho D, Park HJ. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci 2016; 152:126-34. [DOI: 10.1016/j.lfs.2016.03.039] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/09/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
|
11
|
Lian S, Xia Y, Khoi PN, Ung TT, Yoon HJ, Kim NH, Kim KK, Jung YD. Cadmium induces matrix metalloproteinase-9 expression via ROS-dependent EGFR, NF-кB, and AP-1 pathways in human endothelial cells. Toxicology 2015; 338:104-16. [PMID: 26514923 DOI: 10.1016/j.tox.2015.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 11/29/2022]
Abstract
Cadmium (Cd), a widespread cumulative pollutant, is a known human carcinogen, associated with inflammation and tumors. Matrix metalloproteinase-9 (MMP-9) plays a pivotal role in tumor metastasis; however, the mechanisms underlying the MMP-9 expression induced by Cd remain obscure in human endothelial cells. Here, Cd elevated MMP-9 expression in dose- and time-dependent manners in human endothelial cells. Cd increased ROS production and the ROS-producing NADPH oxidase. Cd translocates p47(phox), a key subunit of NADPH oxidase, to the cell membrane. Cd also activated the phosphorylation of EGFR, Akt, Erk1/2, and JNK1/2 in addition to promoting NF-кB and AP-1 binding activities. Specific inhibitor and mutagenesis studies showed that EGFR, Akt, Erk1/2, JNK1/2 and transcription factors NF-κB and AP-1 were related to Cd-induced MMP-9 expression in endothelial cells. Akt, Erk1/2, and JNK1/2 functioned as upstream signals in the activation of NF-κB and AP-1, respectively. In addition, N-acetyl-l-cystein (NAC), diphenyleneiodonium chloride (DPI) and apocynin (APO) inhibited the Cd-induced activation of EGFR, Akt, Erk1/2, JNK1/2, and p38 MAPK, indicating that ROS production by NADPH oxidase is the furthest upstream signal in MMP-9 expression. At present, it states that Cd displayed marked invasiveness in ECV304 cells, which was partially abrogated by MMP-9 neutralizing antibodies. These results demonstrated that Cd induces MMP-9 expression via ROS-dependent EGFR->Erk1/2, JNK1/2->AP-1 and EGFR->Akt->NF-κB signaling pathways and, in turn, stimulates invasiveness in human endothelial cells.
Collapse
Affiliation(s)
- Sen Lian
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Yong Xia
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Trong Thuan Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyun Joong Yoon
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Nam Ho Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kyung Keun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea.
| |
Collapse
|
12
|
Kim JH, Choo YY, Tae N, Min BS, Lee JH. The anti-inflammatory effect of 3-deoxysappanchalcone is mediated by inducing heme oxygenase-1 via activating the AKT/mTOR pathway in murine macrophages. Int Immunopharmacol 2014; 22:420-6. [PMID: 25091623 DOI: 10.1016/j.intimp.2014.07.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/09/2014] [Accepted: 07/22/2014] [Indexed: 11/24/2022]
Abstract
3-Deoxysappanchalcone (3-DSC), isolated from Caesalpinia sappan (Leguminosae), is a chalcone that exerts a variety of pharmacological activities. In the present study, we demonstrated that 3-DSC exerts anti-inflammatory activity in murine macrophages by inducing heme oxygenase-1 (HO-1) expression at the translational level. Treatment of RAW264.7 cells with 3-DSC induced HO-1 protein expression in a dose- and time-dependent manner without affecting HO-1 mRNA expression. Mitogen-activated protein kinase inhibitors or actinomycin D, a transcriptional inhibitor, did not block 3-DSC-mediated HO-1 induction. However, 3-DSC-mediated HO-1 induction was completely blocked by treatment with cycloheximide, a translational inhibitor, or rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR). Strikingly, 3-DSC increased the phosphorylation level of mTOR downstream target molecules such as eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1), as well as AKT in a dose- and time-dependent manner, suggesting that the 3-DSC induces HO-1 expression by activating the AKT/mTOR pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, 3-DSC inhibited the production of nitric oxide (NO) and interleukin (IL)-6 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Inhibition of HO-1 activity by treatment with tin protoporphyrin IX, a specific HO-1 inhibitor, abrogated the inhibitory effects of 3-DSC on the production of NO and IL-6 in LPS-stimulated RAW264.7 cells. Taken together, 3-DSC may be an effective HO-1 inducer at the translational level that has anti-inflammatory effects, and a valuable compound for modulating inflammatory conditions.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701, Republic of Korea
| | - Young-Yeon Choo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701, Republic of Korea
| | - Nara Tae
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701, Republic of Korea.
| |
Collapse
|
13
|
Isoflavonoid-Rich Flemingia macrophylla Extract Attenuates UVB-Induced Skin Damage by Scavenging Reactive Oxygen Species and Inhibiting MAP Kinase and MMP Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:696879. [PMID: 23935672 PMCID: PMC3713360 DOI: 10.1155/2013/696879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the antioxidant activity and anti-photoaging properties of an extract of Flemingia macrophylla, a plant rich in isoflavonoid content. Pretreatment of fibroblasts with Flemingia macrophylla extract (FME) inhibited elastase activity, promoted the protein expression of type I procollagen, and attenuated the phosphorylation of mitogen-activated protein (MAP) kinase and the protein expression of matrix-metalloproteinase- (MMP-) 1, 3, and 9. The IC50 values were 2.1 μg/mL for DPPH radical scavenging ability, 366.8 μg/mL for superoxide anion scavenging ability, 178.9 μg/mL for hydrogen peroxide scavenging ability, and 230.9 μg/mL for hydroxyl radical scavenging ability. Also, exposure of erythrocytes to various concentrations of FME (50–500 μg/mL) resulted in a dose- and time-dependent inhibition of AAPH-induced hemolysis. In human fibroblasts, FME at 10 μg/mL was shown to be a potent scavenger of UV-induced reactive oxygen species (ROS). The antioxidant and anti-photoaging properties of FME make it an ideal anti-intrinsic aging and anti-photoaging agent.
Collapse
|
14
|
Borg M, Brincat S, Camilleri G, Schembri-Wismayer P, Brincat M, Calleja-Agius J. The role of cytokines in skin aging. Climacteric 2013; 16:514-21. [PMID: 23659624 DOI: 10.3109/13697137.2013.802303] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cutaneous aging is one of the major noticeable menopausal complications that most women want to fight in their quest for an eternally youthful skin appearance. It may contribute to some maladies that occur in aging which, despite not being life-threatening, affect the well-being, psychological state and quality of life of aged women. Skin aging is mainly affected by three factors: chronological aging, decreased levels of estrogen after menopause, and environmental factors. Aged skin is characterized by a decrease in collagen content and skin thickness which result in dry, wrinkled skin that is easily bruised and takes a longer time to heal. Cytokines play a crucial role in the manifestation of these features of old skin. The pro-inflammatory cytokine tumor necrosis factor-alpha inhibits collagen synthesis and enhances collagen degradation by increasing the production of MMP-9. It also lowers the skin immunity and thus increases the risk of cutaneous infections in old age. Deranged levels of several interleukins and interferons also affect the aging process. The high level of CCN1 protein in aged skin gives dermal fibroblasts an 'age-associated secretory phenotype' that causes abnormal homeostasis of skin collagen and leads to the loss of the function and integrity of skin. Further research is required especially to establish the role of cytokines in the treatment of cutaneous aging.
Collapse
Affiliation(s)
- M Borg
- * Department of Anatomy, Faculty of Medicine and Surgery, University of Malta
| | | | | | | | | | | |
Collapse
|
15
|
Chao CY, Lii CK, Hsu YT, Lu CY, Liu KL, Li CC, Chen HW. Induction of heme oxygenase-1 and inhibition of TPA-induced matrix metalloproteinase-9 expression by andrographolide in MCF-7 human breast cancer cells. Carcinogenesis 2013; 34:1843-51. [PMID: 23615401 DOI: 10.1093/carcin/bgt131] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a critical role in cancer metastasis. Andrographolide (AP) is a diterpene lactone in the leaves and stem of Andrographis paniculata (Burm. f) Ness that has been reported to possess anticancer activity. In this study, we investigated the effect of AP on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression and invasion in MCF-7 breast cancer cells and the possible mechanisms involved. The results showed that AP dose-dependently inhibited TPA-induced MMP-9 protein expression, enzyme activity, migration and invasion. In addition, AP significantly induced heme oxygenase-1 (HO-1) messenger RNA (mRNA) and protein expression. Transfection with HO-1 small interfering RNA knocked down the HO-1 expression and reversed the inhibition of MMP-9 expression by AP. HO-1 end products, such as carbon monoxide, free iron and bilirubin, suppressed the TPA-induced MMP-9 mRNA and protein expression, enzyme activity, migration and invasion in MCF-7 cells. Furthermore, TPA-induced extracellular signal-regulated kinase (ERK) 1/2 and Akt phosphorylation and the DNA binding activity of activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) were attenuated by pretreatment with AP and HO-1 end products. In conclusion, these results suggest that AP inhibits TPA-induced cell migration and invasion by reducing MMP-9 activation, which is mediated mainly by inhibition of the ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways and subsequent AP-1 and NF-κB transactivation. Additionally, induction of HO-1 expression is at least partially involved in the inhibition of TPA-induced MMP-9 activation and cell migration in MCF-7 cells by AP.
Collapse
Affiliation(s)
- Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen HW, Chao CY, Lin LL, Lu CY, Liu KL, Lii CK, Li CC. Inhibition of matrix metalloproteinase-9 expression by docosahexaenoic acid mediated by heme oxygenase 1 in 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 human breast cancer cells. Arch Toxicol 2013; 87:857-69. [PMID: 23288142 DOI: 10.1007/s00204-012-1003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/18/2012] [Indexed: 12/22/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays a crucial role in tumor metastasis. Previous studies showed that polyunsaturated fatty acids exhibit an anti-cancer effect in various human carcinoma cells, but the effect of docosahexaenoic acid (DHA) and linoleic acid (LA) on metastasis of breast cancer cells is not fully clarified. We studied the anti-metastasis potential of DHA and LA in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MCF-7 cells. We found that TPA (100 ng/ml) induced MMP-9 enzyme activity both dose- and time-dependently, and 200 μM DHA and LA significantly inhibited MMP-9 mRNA and protein expression, enzyme activity, cell migration, and invasion. Treatment with PD98059 (10 μM), wortmannin (10 μM), and GF109203X (0.5 μM) decreased TPA-induced MMP-9 protein expression and enzyme activity. TPA-induced activation of ERK1, Akt, and PKCδ was attenuated by DHA, whereas LA attenuated only ERK1 activation. GF109203X also suppressed ERK1 activation. EMSA showed that DHA, LA, PD98059, and wortmannin decreased TPA-induced NF-κB and AP-1 DNA-binding activity. Furthermore, DHA rather than LA dose-dependently increased HO-1 expression. HO-1 siRNA alleviated the inhibition by DHA of TPA-induced MMP-9 protein expression and enzyme activity in MCF-7 cells, and HO-1 knockdown reversed the DHA inhibition of cell migration. These results suggest that DHA and LA have both similar and divergent signaling pathways in the suppression of TPA-induced MCF-7 metastasis.
Collapse
Affiliation(s)
- Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
17
|
Anti-proliferative effect of Flos Albiziae flavonoids on the human gastric cancer SGC-7901 cell line. Exp Ther Med 2012; 5:51-56. [PMID: 23251241 PMCID: PMC3524100 DOI: 10.3892/etm.2012.771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 09/14/2012] [Indexed: 02/06/2023] Open
Abstract
The flavonoids found in many foods may have a protective effect against human gastric cancer. However, little information is available concerning the effects of flavonoids on the SGC-7901 cell line. Therefore, we first evaluated the effects of purified Flos Albiziae flavonoids (FAFs) on the proliferation of the SGC-7901 human gastric cancer cell line and investigated its possible anti-proliferative mechanisms. When SGC-7901 cells were treated with FAFs for various time periods (12-72 h) and at various doses (0-32 μg/ml), cell growth decreased significantly in a time- and dose-dependent manner. Morphological observations with fluorescence microscopy and transmission electron microscopy (TEM) yielded clear evidence of cell shrinkage, formation of cytoplasmic filaments, condensation of nuclear chromatin, and cell apoptosis in the presence of FAFs. Treatment with FAFs changed the expression levels of Bcl-2, P65, Bax and caspase. The anti-apoptotic protein expression of Bcl-2 and p65 decreased gradually with the increase in FAF concentration, compared with control cells (P<0.05). FAFs contributed to the increase in Bax and caspase expression. The expression of pro-apoptotic proteins Bax and caspase were upregulated by FAFs compared with control cells (P<0.01). These results demonstrated that FAFs effectively induced apoptosis in the SGC-7901 cell line. This indicates that FAFs are likely to possess anticancer activity.
Collapse
|