1
|
Xu DH, Du JK, Liu SY, Zhang H, Yang L, Zhu XY, Liu YJ. Upregulation of KLK8 contributes to CUMS-induced hippocampal neuronal apoptosis by cleaving NCAM1. Cell Death Dis 2023; 14:278. [PMID: 37076499 PMCID: PMC10115824 DOI: 10.1038/s41419-023-05800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Neuronal apoptosis has been well-recognized as a critical mediator in the pathogenesis of depressive disorders. Tissue kallikrein-related peptidase 8 (KLK8), a trypsin-like serine protease, has been implicated in the pathogenesis of several psychiatric disorders. The present study aimed to explore the potential function of KLK8 in hippocampal neuronal cell apoptosis associated with depressive disorders in rodent models of chronic unpredictable mild stress (CUMS)-induced depression. It was found that depression-like behavior in CUMS-induced mice was associated with hippocampal KLK8 upregulation. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency attenuated CUMS-induced depression-like behaviors and hippocampal neuronal apoptosis. In HT22 murine hippocampal neuronal cells and primary hippocampal neurons, adenovirus-mediated overexpression of KLK8 (Ad-KLK8) was sufficient to induce neuron apoptosis. Mechanistically, it was identified that the neural cell adhesion molecule 1 (NCAM1) may associate with KLK8 in hippocampal neurons as KLK8 proteolytically cleaved the NCAM1 extracellular domain. Immunofluorescent staining exhibited decreased NCAM1 in hippocampal sections obtained from mice or rats exposed to CUMS. Transgenic overexpression of KLK8 exacerbated, whereas KLK8 deficiency largely prevented CUMS-induced loss of NCAM1 in the hippocampus. Both adenovirus-mediated overexpression of NCAM1 and NCAM1 mimetic peptide rescued KLK8-overexpressed neuron cells from apoptosis. Collectively, this study identified a new pro-apoptotic mechanism in the hippocampus during the pathogenesis of CUMS-induced depression via the upregulation of KLK8, and raised the possibility of KLK8 as a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Dan-Hong Xu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
- Department of Physiology, Navy Medical University, Shanghai, 200433, China
| | - Jian-Kui Du
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, 41008, China
| | - Shi-Yu Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lu Yang
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, 200433, China.
| | - Yu-Jian Liu
- School of Kinesiology, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
2
|
Utilising Network Pharmacology to Explore Underlying Mechanism of Astragalus membranaceus in Improving Sepsis-Induced Inflammatory Response by Regulating the Balance of I κB α and NF- κB in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7141767. [PMID: 35399630 PMCID: PMC8989567 DOI: 10.1155/2022/7141767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Objective The purpose of the present study was to explore the mechanism of Astragalus membranaceus in the treatment of sepsis. Methods We searched the active components and targets of Astragalus membranaceus using the TCMSP and BATMAN databases. Then, the GeneCards, MalaCards, and OMIM databases were used to screen out relevant targets of sepsis. The common targets of the former two gene sets were uploaded to the STRING database to create an interaction network. DAVID was used to perform KEGG enrichment analysis of the core targets. Based on the results of KEGG and previous studies, key pathways for the development of sepsis were identified and experimentally validated. Result We obtained 3,370 sepsis-related targets in databases and 59 active components in Astragalus membranaceus through data mining, corresponding to 1,130 targets. The intersection of the two types of targets led to a total of 318 common targets and 84 core targets were obtained after screening again. The KEGG and previous studies showed that these 84 core targets were involved in sepsis by regulating TNF, MAPK, and PI3K pathways. TNF, MAPK8, NF-κB, and IκBα are crucial in sepsis. Experimental validation demonstrated that some markers in sepsis model rats were improved after the intervention with Astragalus granules and their chemical components. Among them, IL-1β, IL-6, and TNF-α in rat serum were reduced. The mRNA and protein expression of TNF-α, IL-6, MMP9, MAPK8, and NF-κB were reduced in rat blood. However, the mRNA and protein expression of IκBα and PI3K were increased in rat blood. Conclusion The AST could affect the TNF, PI3K, and MAPK pathway cascade responses centred on IκBα and NF-κB, attenuate the expression of IL-6 and MMP9, and interfere with the inflammatory response during sepsis.
Collapse
|
3
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
4
|
Zhang XL, Xu FX, Han XY. siRNA-mediated NCAM1 gene silencing suppresses oxidative stress in pre-eclampsia by inhibiting the p38MAPK signaling pathway. J Cell Biochem 2019; 120:18608-18617. [PMID: 31353686 DOI: 10.1002/jcb.28778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 02/03/2023]
Abstract
Pre-eclampsia (PE), whose pathophysiology and etiology remain undefined, represents a leading consequence of fetal and maternal mortality and morbidity. Oxidative stress (OS) is recognized to involve in this disorder. In this study, we hypothesized that neural cell adhesion molecule 1 (NCAM1) gene silencing would suppress the OS in the pregnancy complicated by PE. Initially, clinical samples were collected for determination of NCAM1 expression in placental tissues and levels of OS products in blood. To assess the regulatory mechanism of NCAM1 knockdown on OS, we used small interfering RNA (siRNA) to silence NCAM1 expression in human umbilical vein endothelial cells (HUVECs). Next, cells were treated with or without hypoxia/reoxygenation to observe the level changes of OS products and p38 mitogen-activated protein kinase (p38MAPK) pathway-related genes. Finally, an evaluation of HUVEC migration and invasion abilities was conducted by wound-healing and transwell assays. Placenta of pregnancy with PE presented significantly increased NCAM1 expression in comparison to placenta of normal pregnancy. Meanwhile, enhanced OS in blood of pregnant women with PE was observed relative to women with normal pregnancy. siRNA-mediated knockdown of NCAM1 gene could inhibit the p38MAPK signaling pathway, repress OS, and promote cell migration and invasion in HUVECs, indicating that NCAM1 inhibition could reduce the influence of PE. Importantly, blocking the p38MAPK signaling pathway reversed the inhibitory role of NCAM1 gene silencing on PE. Collectively, this study defines potential role of NCAM1 gene silencing as a therapeutic target in PE through inhibiting OS and enhancing HUVEC migration and invasion by disrupting the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiao-Lin Zhang
- Department of Obstetrics, Zoucheng Hospital District of Affiliated Hospital of Jining Medical University, Zoucheng, People's Republic of China
| | - Feng-Xian Xu
- Department of Obstetrics, Zoucheng Hospital District of Affiliated Hospital of Jining Medical University, Zoucheng, People's Republic of China
| | - Xiao-Yun Han
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
5
|
Zhao Y, Sharfman NM, Jaber VR, Lukiw WJ. Down-Regulation of Essential Synaptic Components by GI-Tract Microbiome-Derived Lipopolysaccharide (LPS) in LPS-Treated Human Neuronal-Glial (HNG) Cells in Primary Culture: Relevance to Alzheimer's Disease (AD). Front Cell Neurosci 2019; 13:314. [PMID: 31354434 PMCID: PMC6635554 DOI: 10.3389/fncel.2019.00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
Trans-synaptic neurotransmission of both electrical and neurochemical information in the central nervous system (CNS) is achieved through a highly interactive network of neuron-specific synaptic proteins that include pre-synaptic and post-synaptic elements. These elements include a family of several well-characterized integral- and trans-membrane synaptic core proteins necessary for the efficient operation of this complex signaling network, and include the pre-synaptic proteins: (i) neurexin-1 (NRXN-1); (ii) the synaptosomal-associated phosphoprotein-25 (SNAP-25); (iii) the phosphoprotein synapsin-2 (SYN-2); and the post-synaptic elements: (iv) neuroligin (NLGN), a critical cell adhesion protein; and (v) the SH3-ankyrin repeat domain, proline-rich cytoskeletal scaffolding protein SHANK3. All five of these pre- and post-synaptic proteins have been found to be significantly down-regulated in primary human neuronal-glial (HNG) cell co-cultures after exposure to Bacteroides fragilis lipopolysaccharide (BF-LPS). Interestingly, LPS has also been reported to be abundant in Alzheimer's disease (AD) affected brain cells where there are significant deficits in this same family of synaptic components. This "Perspectives" paper will review current research progress and discuss the latest findings in this research area. Overall these experimental results provide evidence (i) that gastrointestinal (GI) tract-derived Gram-negative bacterial exudates such as BF-LPS express their neurotoxicity in the CNS in part through the directed down-regulation of neuron-specific neurofilaments and synaptic signaling proteins; and (ii) that this may explain the significant alterations in immune-responses and cognitive deficits observed after bacterial-derived LPS exposure to the human CNS.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
6
|
Yamazaki Y, Harada S, Tokuyama S. [Potential of the Cerebral Sodium-Glucose Transporter as a Novel Therapeutic Target in Cerebral Ischemia]. YAKUGAKU ZASSHI 2018; 138:955-962. [PMID: 29962475 DOI: 10.1248/yakushi.17-00223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral ischemic stress often induces a hyperglycemic condition. This postischemic hyperglycemia exacerbates the development of cerebral ischemic neuronal damage, although the mechanism of this exacerbation remains to be clarified. We previously discovered that the cerebral sodium-glucose transporter (SGLT) was closely involved in the development of cerebral ischemic neuronal damage. SGLT is a member of the glucose transporter family and moves glucose together with sodium ions. SGLT-1, -3, -4, and -6 are distributed in the brain. We conducted further experiments to elucidate the detailed mechanism of the exacerbation of cerebral ischemia by cerebral SGLT. The results clarified: 1) the relationship between cerebral SGLT and postischemic hyperglycemia; 2) the involvement of cerebral SGLT-1 (a cerebral SGLT isoform) in cerebral ischemic neuronal damage; and 3) the effects of sodium influx through cerebral SGLT on the development of cerebral ischemic neuronal damage. This paper presents our data on the involvement of cerebral SGLT in the exacerbation of cerebral ischemic neuronal damage.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shinichi Harada
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
7
|
Yamazaki Y, Harada S, Wada T, Hagiwara T, Yoshida S, Tokuyama S. Sodium influx through cerebral sodium-glucose transporter type 1 exacerbates the development of cerebral ischemic neuronal damage. Eur J Pharmacol 2017; 799:103-110. [DOI: 10.1016/j.ejphar.2017.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 01/04/2023]
|
8
|
Yu C, Sun X, Niu Y. An investigation of the developmental neurotoxic potential of curcumol in PC12 cells. Toxicol Mech Methods 2016; 26:635-643. [DOI: 10.1080/15376516.2016.1207735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunlei Yu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Xiaojie Sun
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
9
|
Luke MPS, LeVatte TL, Rutishauser U, Tremblay F, Clarke DB. Polysialylated Neural Cell Adhesion Molecule Protects Against Light-Induced Retinal Degeneration. Invest Ophthalmol Vis Sci 2016; 57:5066-5075. [PMID: 27661859 PMCID: PMC6012193 DOI: 10.1167/iovs.16-19499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose We previously demonstrated that neural cell adhesion molecule (NCAM) plays an important role in supporting the survival of injured retinal ganglion cells. In the current study, we used light-induced retinal degeneration (LIRD) as a model to investigate whether NCAM plays a functional role in neuroprotection and whether NCAM influences p75NTR signaling in modulating retinal cell survival. Methods Retinas from wild-type (WT) and NCAM deficient (−/−) mice were tested by electroretinogram before and after LIRD, and changes in the protein expressions of NCAM, polysialic acid (PSA)-NCAM, p75NTR, and active caspase 3 were measured by immunoblot from 0 to 4 days after light induction. The effects of NCAM and PSA-NCAM on p75NTR were examined by intraocular injections of the p75NTR function-blocking antibody and/or the removal of PSA with endoneuraminidase-N prior to LIRD. Results In WT mice, low levels of active caspase 3 activation were detected on the first day, followed by increases up to 4 days after LIRD. Conversely, in NCAM−/− mice, higher cleaved caspase 3 levels along with rapid reductions in electroretinogram amplitudes were found earlier at day 1, followed by reduced levels by day 4. The removal of PSA prior to LIRD induced earlier onset of retinal cell death, an effect delayed by the coadministration of endoneuraminidase-N and the p75NTR function-blocking antibody antiserum. Conclusions These results indicate that NCAM protects WT retinas from LIRD; furthermore, the protective effect of NCAM is, at least in part, attributed to its effects on p75NTR.
Collapse
Affiliation(s)
- Margaret Po-Shan Luke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Terry L LeVatte
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Urs Rutishauser
- Cellular and Developmental Neuroscience, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States
| | - François Tremblay
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada 4Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - David B Clarke
- Department of Medical Neuroscience, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada 4Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada 5Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm-Helm A, Noortoots A, Anier K, Van Elzen R, Gérard M, Lambeir AM, Roßner S, Morawski M, Zharkovsky A. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci 2016; 129:3792-3802. [PMID: 27566163 DOI: 10.1242/jcs.181891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Membrane-associated glycoprotein neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) play an important role in brain plasticity by regulating cell-cell interactions. Here, we demonstrate that the cytosolic serine protease prolyl endopeptidase (PREP) is able to regulate NCAM and PSA-NCAM. Using a SH-SY5Y neuroblastoma cell line with stable overexpression of PREP, we found a remarkable loss of PSA-NCAM, reduced levels of NCAM180 and NCAM140 protein species, and a significant increase in the NCAM immunoreactive band migrating at an apparent molecular weight of 120 kDa in PREP-overexpressing cells. Moreover, increased levels of NCAM fragments were found in the concentrated medium derived from PREP-overexpressing cells. PREP overexpression selectively induced an activation of matrix metalloproteinase-9 (MMP-9), which could be involved in the observed degradation of NCAM, as MMP-9 neutralization reduced the levels of NCAM fragments in cell culture medium. We propose that increased PREP levels promote epidermal growth factor receptor (EGFR) signaling, which in turn activates MMP-9. In conclusion, our findings provide evidence for newly-discovered roles for PREP in mechanisms regulating cellular plasticity through NCAM and PSA-NCAM.
Collapse
Affiliation(s)
- Külli Jaako
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Keiti Parik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Linda Klimaviciusa
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Anu Aonurm-Helm
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Aveli Noortoots
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Kaili Anier
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Roos Van Elzen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Melanie Gérard
- Interdisciplinary Research Centre KU Leuven-Kortrijk, Kortrijk B-8500, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp B-2610, Belgium
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
11
|
Han C, Lim YH, Hong YC. The Association Between Oxidative Stress and Depressive Symptom Scores in Elderly Population: A Repeated Panel Study. J Prev Med Public Health 2016; 49:260-274. [PMID: 27744668 PMCID: PMC5066422 DOI: 10.3961/jpmph.16.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
Objectives Previous epidemiological studies about oxidative stress and depression are limited by hospital-based case-control design, single-time measurements of oxidative stress biomarkers, and the small number of study participants. Therefore, in this study, we analyzed the association between biomarker of oxidative stress and depressive symptom scores using repeatedly measured panel data from a community-dwelling elderly population. Methods From 2008 to 2010, a total of 478 elderly participants residing in Seoul, Korea, were evaluated three times. Participants underwent the Korean version of the Short Form Generic Depression Scale (SGDS-K) test for screening depression, and urinary malondialdehyde (MDA) levels were measured as an oxidative stress biomarker. We used a generalized estimating equation with a compound symmetry covariance structure to estimate the effects of oxidative stress on depressive symptom scores. Results A two-fold increase in urinary MDA concentration was significantly associated with a 33.88% (95% confidence interval [CI], 21.59% to 47.42%) increase in total SGDS-K scores. In subgroup analyses by gender, a two-fold increase in urinary MDA concentration was significantly associated with increased SGDS-K scores in both men and women (men: 30.88%; 95% CI, 10.24% to 55.37%; women: 34.77%; 95% CI, 20.09% to 51.25%). In bivariate analysis after an SGDS-K score ≥8 was defined as depression, the third and the fourth urinary MDA quartiles showed a significantly increased odds ratio(OR) of depression compared to the lowest urinary MDA quartile (third quartile OR, 6.51; 95% CI, 1.77 to 24.00; fourth quartile OR, 7.11; 95% CI, 1.99 to 25.42). Conclusions Our study suggests a significant association between oxidative stress and depressive symptoms in the elderly population.
Collapse
Affiliation(s)
- Changwoo Han
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Yamazaki Y, Harada S, Wada T, Yoshida S, Tokuyama S. Sodium transport through the cerebral sodium-glucose transporter exacerbates neuron damage during cerebral ischaemia. ACTA ACUST UNITED AC 2016; 68:922-31. [PMID: 27139580 DOI: 10.1111/jphp.12571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/10/2016] [Indexed: 01/04/2023]
Abstract
OBJECTIVES We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. METHODS [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). KEY FINDINGS In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. CONCLUSIONS Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage.
Collapse
Affiliation(s)
- Yui Yamazaki
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Shinichi Harada
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| | - Tetsuyuki Wada
- Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka, Japan
| | - Shigeru Yoshida
- Department of Life Science, Faculty of Science and Engineering, Kinki University, Higashiosaka, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, Japan
| |
Collapse
|
13
|
Activation of cerebral sodium-glucose transporter type 1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemia. Neuroscience 2015; 310:674-85. [PMID: 26454021 DOI: 10.1016/j.neuroscience.2015.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/15/2015] [Accepted: 10/03/2015] [Indexed: 12/21/2022]
Abstract
The regulation of post-ischemic hyperglycemia plays an important role in suppressing neuronal damage in therapeutic strategies for cerebral ischemia. We previously reported that the cerebral sodium-glucose transporter (SGLT) was involved in the post-ischemic hyperglycemia-induced exacerbation of cerebral ischemic neuronal damage. Cortical SGLT-1, one of the cerebral SGLT isoforms, is dramatically increased by focal cerebral ischemia. In this study, we focused on the involvement of cerebral SGLT-1 in the development of cerebral ischemic neuronal damage. It was previously reported that activation of 5'-adenosine monophosphate-activated protein kinase (AMPK) increases SGLT-1 expression. Moreover, ischemic stress-induced activation of AMPK exacerbates cerebral ischemic neuronal damage. Therefore, we directly confirmed the relationship between cerebral SGLT-1 and cerebral AMPK activation using in vitro primary culture of mouse cortical neurons. An in vivo mouse model of focal cerebral ischemia was generated using a middle cerebral artery occlusion (MCAO). The development of infarct volume and behavioral abnormalities on day 3 after MCAO were ameliorated in cerebral SGLT-1 knock down mice. Cortical and striatal SGLT-1 expression levels were significantly increased at 12h after MCAO. Immunofluorescence revealed that SGLT-1 and the neuronal nuclear antigen (NeuN) were co-localized in the cortex and striatum of MCAO mice. In the in vitro study, primary cortical neurons were cultured for five days before each treatment with reagents. Concomitant treatment with hydrogen peroxide and glucose induced the elevation of SGLT-1 and phosphorylated AMPK/AMPK ratio, and this elevation was suppressed by compound C, an AMPK inhibitor in primary cortical neurons. Moreover, compound C suppressed neuronal cell death induced by concomitant hydrogen peroxide/glucose treatment in primary cortical neurons. Therefore, we concluded that enhanced cerebral SGLT-1 function mediated by post-ischemic hyperglycemia exacerbates the development of cerebral ischemic neuronal damage. One of the mechanisms of cerebral SGLT-1 up-regulation may be involved in the AMPK activation after cerebral ischemia.
Collapse
|
14
|
Relationship between cerebral sodium–glucose transporter and hyperglycemia in cerebral ischemia. Neurosci Lett 2015; 604:134-9. [DOI: 10.1016/j.neulet.2015.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/17/2015] [Accepted: 08/03/2015] [Indexed: 01/04/2023]
|
15
|
Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015; 144:365-373. [PMID: 25580634 DOI: 10.1111/imm.12443] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/21/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests the significant role of inflammation and oxidative stress as main contributors to the neuroprogression that is observed in major depressive disorder (MDD), where patients show increased inflammatory and oxidative stress biomarkers. The process of neuroprogression includes stage-related neurodegeneration, cell death, reduced neurogenesis, reduced neuronal plasticity and increased autoimmune responses. Oxidative stress is a consequence of the biological imbalance between Reactive Oxygen Species (ROS) and antioxidants, leading to the alteration of biomolecules and the loss of control of the intracellular redox-related signaling pathways. ROS serve as crucial secondary messengers in signal transduction and significantly affect inflammatory pathways by activating NF-κB and MAPK family stress kinases. When present in excess, ROS inflict damage, affecting cellular constituents with the formation of pro-inflammatory molecules, such as malondialdehyde, 4-Hydroxynonenal, neoepitopes and damage-associated molecular patterns promoting immune response, and ultimately leading to cell death. The failure of cells to adapt to the changes in redox homeostasis and the subsequent cell death, together with the damage caused by inflammatory mediators, have been considered as major causes of neuroprogression and hence MDD. Both an activated immune-inflammatory system and increased oxidative stress act synergistically, complicating our understanding of the pathogenesis of depression. The cascade of antioxidative and inflammatory events is orchestrated by several transcription factors, with Nrf2 and NF-κB having particular relevance to MDD. This review focuses on potential molecular mechanisms through which impaired redox homeostasis and neuroinflammation can affect the neuronal environment and contribute to depression This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nataliia Bakunina
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | | | | |
Collapse
|
16
|
HARADA S, TSUJITA T, ONO A, MIYAGI K, MORI T, TOKUYAMA S. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury. J Nutr Sci Vitaminol (Tokyo) 2015; 61:167-74. [DOI: 10.3177/jnsv.61.167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shinichi HARADA
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Tsukasa TSUJITA
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Akiko ONO
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Kei MIYAGI
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | | | - Shogo TOKUYAMA
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
17
|
Ding L, Ye L, Xu J, Jiang WG. Impact of fibroblast activation protein on osteosarcoma cell lines in vitro.. Oncol Lett 2014; 7:699-704. [PMID: 24520291 PMCID: PMC3919928 DOI: 10.3892/ol.2014.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/06/2013] [Indexed: 11/28/2022] Open
Abstract
Fibroblast activation protein (FAP) or seprase, which belongs to the group type II integral serine proteases, is an integral membrane serine peptidase. Previous studies have demonstrated that FAP has an effect on tumor growth, proliferation and invasion. However, the cellular functional role that FAP plays in osteosarcoma (OS) remains unknown. The aim of the present study was to investigate the activities of FAP in OS cell lines. The gene expression of FAP was knocked down through a hammerhead ribozyme transgene, and the various functions between the knockdown cells and their control cells were tested using a series of functional assays in vitro. The results indicated that knockdown of FAP markedly reduced the ability of cellular growth, matrix adhesion, migration and invasion in MG-63 and HOS cell lines compared with the control cells (P<0.05). In conclusion, FAP influences OS cells and may play a role in OS tumor progression and metastasis.
Collapse
Affiliation(s)
- Lixiang Ding
- Cardiff University-Capital Medical University Joint Centre for Biomedical Research, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK ; Department of Orthopaedic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Lin Ye
- Cardiff University-Capital Medical University Joint Centre for Biomedical Research, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Jianli Xu
- Department of Orthopaedic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Wen G Jiang
- Cardiff University-Capital Medical University Joint Centre for Biomedical Research, Cardiff CF14 4XN, UK ; Metastasis and Angiogenesis Research Group, Institute of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
18
|
Baranger K, Rivera S, Liechti FD, Grandgirard D, Bigas J, Seco J, Tarrago T, Leib SL, Khrestchatisky M. Endogenous and synthetic MMP inhibitors in CNS physiopathology. PROGRESS IN BRAIN RESEARCH 2014; 214:313-51. [DOI: 10.1016/b978-0-444-63486-3.00014-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Verslegers M, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol 2013; 105:60-78. [PMID: 23567503 DOI: 10.1016/j.pneurobio.2013.03.004] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimer's disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.
Collapse
Affiliation(s)
- Mieke Verslegers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
20
|
Abstract
Ischemic stroke is one of the leading causes of disability and death in the world. Elucidation of the underlying mechanisms associated with neuronal death during this detrimental process has been of significant interest in the field of research. One principle component vital to the maintenance of cellular integrity is the cytoskeleton. Studies suggest that abnormalities at the level of this fundamental structure are directly linked to adverse effects on cellular well-being, including cell death. In recent years, evidence has also emerged regarding an imperative role for the transient receptor potential (TRP) family member TRPM7 in the mediation of excitotoxic-independent neuronal demise. In this review, we will elaborate on the current knowledge and unique properties associated with the functioning of this structure. In addition, we will deliberate the involvement of distinct mechanistic pathways during TRPM7-dependent cell death, including modifications at the level of the cytoskeleton.
Collapse
Affiliation(s)
- Suhail Asrar
- Department of Biological Sciences, University of Toronto, Scarborough, ON, Canada
| | | |
Collapse
|