1
|
Mathomes RT, Koulas SM, Tsialtas I, Stravodimos G, Welsby PJ, Psarra AMG, Stasik I, Leonidas DD, Hayes JM. Multidisciplinary docking, kinetics and X-ray crystallography studies of baicalein acting as a glycogen phosphorylase inhibitor and determination of its' potential against glioblastoma in cellular models. Chem Biol Interact 2023; 382:110568. [PMID: 37277066 DOI: 10.1016/j.cbi.2023.110568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Glycogen phosphorylase (GP) is the rate-determining enzyme in the glycogenolysis pathway. Glioblastoma (GBM) is amongst the most aggressive cancers of the central nervous system. The role of GP and glycogen metabolism in the context of cancer cell metabolic reprogramming is recognised, so that GP inhibitors may have potential treatment benefits. Here, baicalein (5,6,7-trihydroxyflavone) is studied as a GP inhibitor, and for its effects on glycogenolysis and GBM at the cellular level. The compound is revealed as a potent GP inhibitor against human brain GPa (Ki = 32.54 μM), human liver GPa (Ki = 8.77 μM) and rabbit muscle GPb (Ki = 5.66 μM) isoforms. It is also an effective inhibitor of glycogenolysis (IC50 = 119.6 μM), measured in HepG2 cells. Most significantly, baicalein demonstrated anti-cancer potential through concentration- and time-dependent decrease in cell viability for three GBM cell-lines (U-251 MG, U-87 MG, T98-G) with IC50 values of ∼20-55 μM (48- and 72-h). Its effectiveness against T98-G suggests potential against GBM with resistance to temozolomide (the first-line therapy) due to a positive O6-methylguanine-DNA methyltransferase (MGMT) status. The solved X-ray structure of rabbit muscle GP-baicalein complex will facilitate structure-based design of GP inhibitors. Further exploration of baicalein and other GP inhibitors with different isoform specificities against GBM is suggested.
Collapse
Affiliation(s)
- Rachel T Mathomes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Symeon M Koulas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Philip J Welsby
- Department of Postgraduate Medical Education, Edge Hill University, Ormskirk, L39 4QP, United Kingdom
| | - Anna-Maria G Psarra
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Izabela Stasik
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Demetres D Leonidas
- Department of Biochemistry & Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Joseph M Hayes
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| |
Collapse
|
2
|
Li HL, Shan SW, Stamer WD, Li KK, Chan HHL, Civan MM, To CH, Lam TC, Do CW. Mechanistic Effects of Baicalein on Aqueous Humor Drainage and Intraocular Pressure. Int J Mol Sci 2022; 23:ijms23137372. [PMID: 35806375 PMCID: PMC9266486 DOI: 10.3390/ijms23137372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that results from impeded fluid drainage. The increase in outflow resistance is caused by trabecular meshwork (TM) cell dysfunction and excessive extracellular matrix (ECM) deposition. Baicalein (Ba) is a natural flavonoid and has been shown to regulate cell contraction, fluid secretion, and ECM remodeling in various cell types, suggesting the potential significance of regulating outflow resistance and IOP. We demonstrated that Ba significantly lowered the IOP by about 5 mmHg in living mice. Consistent with that, Ba increased the outflow facility by up to 90% in enucleated mouse eyes. The effects of Ba on cell volume regulation and contractility were examined in primary human TM (hTM) cells. We found that Ba (1–100 µM) had no effect on cell volume under iso-osmotic conditions but inhibited the regulatory volume decrease (RVD) by up to 70% under hypotonic challenge. In addition, Ba relaxed hTM cells via reduced myosin light chain (MLC) phosphorylation. Using iTRAQ-based quantitative proteomics, 47 proteins were significantly regulated in hTM cells after a 3-h Ba treatment. Ba significantly increased the expression of cathepsin B by 1.51-fold and downregulated the expression of D-dopachrome decarboxylase and pre-B-cell leukemia transcription factor-interacting protein 1 with a fold-change of 0.58 and 0.40, respectively. We suggest that a Ba-mediated increase in outflow facility is triggered by cell relaxation via MLC phosphorylation along with inhibiting RVD in hTM cells. The Ba-mediated changes in protein expression support the notion of altered ECM homeostasis, potentially contributing to a reduction of outflow resistance and thereby IOP.
Collapse
Affiliation(s)
- Hoi-lam Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - King-kit Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
| | - Henry Ho-lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Mortimer M. Civan
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Chi-ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Chi-wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
- Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong
- Correspondence:
| |
Collapse
|
3
|
Shen D, Liu Y, Liu Y, Wang T, Yuan L, Huang X, Wang Y. Long non-coding RNA EWSAT1 promoted metastasis and actin cytoskeleton changes via miR-24-3p sponging in osteosarcoma. J Cell Mol Med 2020; 25:716-728. [PMID: 33225581 PMCID: PMC7812296 DOI: 10.1111/jcmm.16121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/10/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Non‐coding RNAs are closely associated with tumorigenesis in multiple malignant tumours, including osteosarcoma (OS). Long non‐coding RNA Ewing sarcoma‐associated transcript 1 (EWSAT1) plays a role in metastasis, and actin cytoskeletal changes in OS remain unclear. In the current study, we showed that EWSAT1 expression was up‐regulated in OS and that an elevation in the EWSAT1 expression level was correlated with poor prognosis in patients with OS. Functionally, we showed that knockdown of EWSAT1 suppressed migration and induced actin stress fibre degradation in MNNG/HOS and 143B cells. Moreover, we found that ROCK1 was a key downstream effector in EWSAT1‐mediated cell migration and actin stress fibre changes. Furthermore, we demonstrated that ROCK1 and EWSAT1 shared a similar microRNA response element of microRNA‐24‐3p (miR‐24‐3p). Moreover, we verified that miR‐24‐3p suppressed ROCK1 and its mediated migration and actin stress fibres change by direct targeting. EWSAT1 promoted ROCK1‐mediated migration and actin stress fibre formation through miR‐24‐3p sponging. Lastly, through an in vivo study, we demonstrated that EWSAT1 promoted lung metastasis in OS. According to the above‐mentioned results, we suggest that EWSAT1 acts as an oncogene and that EWSAT1/miR‐24‐3p/ROCK1 axial could be a new target in the treatment of OS.
Collapse
Affiliation(s)
- Dewei Shen
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Yize Liu
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Yuexin Liu
- School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Tao Wang
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Lin Yuan
- 2nd Department of Orthopaedic Surgery, Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Xuyang Huang
- 2nd Department of Neurology, Central Hospital affiliated to Shenyang Medical College, Shenyang, China
| | - Yong Wang
- 4th Department of Orthopaedic Surgery, Central Hospital affiliated to Shenyang Medical College, Shenyang, China.,Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang, China
| |
Collapse
|
4
|
Deng X, Ji Z, Xu B, Guo L, Xu L, Qin T, Feng L, Ma Z, Fu Q, Qu R, Quo Q, Ma S. Suppressing the Na +/H + exchanger 1: a new sight to treat depression. Cell Death Dis 2019; 10:370. [PMID: 31068571 PMCID: PMC6506522 DOI: 10.1038/s41419-019-1602-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 11/09/2022]
Abstract
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), plays a crucial role in various physiological and pathological processes. However, the role of NHE1 in depression has not yet been reported. This study was designed to investigate the role of NHE1 in the animal model of depression and explore the underlying mechanisms. Our results showed that inhibition of rho-associated kinase 2 (ROCK2) by fasudil (Fas) or baicalin (BA) significantly alleviated chronic unpredictable mild stress (CUMS) paradigm-induced depression-related behaviours in mice, as shown by decreased sucrose consumption in sucrose preference test (SPT), reduced locomotor activity in the open field test (OFT), and increased immobility time in the tail suspension test (TST) and forced swimming test (FST). Furthermore, ROCK2 inhibition inhibited the activation of NHE1, calpain1, and reduced neuronal apoptosis in the CUMS animal model of depression. Next, we used the lipopolysaccharide (LPS)-challenged animal model of depression to induce NHE1 activation. Our results revealed that mice subjected to 1 μl LPS (10 mg/ml) injection intracerebroventricularly (i.c.v.) showed depressive-like behaviours and NHE1 activation. Amiloride (Ami), an NHE1 inhibitor, significantly reversed the decrease in sucrose consumption and reduction in immobility time in the TST and FST induced by LPS challenge. Furthermore, Ami decreased the expression of ROCK2, NHE1, calpain1, and caspase-3 and increased the Bcl-1/Bax ratio in the hippocampus of LPS-challenged mice. Ami treatment also led to antidepressive effects in the CUMS-induced animal model of depression. Thus ROCK2 inhibition could be proposed as a neuroprotective strategy against neuronal apoptosis, and NHE1 might be a potential therapeutic target in depression.
Collapse
Affiliation(s)
- Xueyang Deng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China.,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 210009, Nanjing, China
| | - Zhouye Ji
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China
| | - Bingru Xu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China
| | - Liting Guo
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China
| | | | - Tingting Qin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 211198, Nanjing, Jiangsu, China
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China
| | - Rong Qu
- Department of Pharmacology of Traditional Chinese Medical Formulae, Nanjing University of Traditional Chinese Medicine, 210029, Nanjing, China
| | - Qinglong Quo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 210009, Nanjing, China.
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 210009, Nanjing, China. .,Qinba Traditional Chinese Medicine Resources Research and Development Center, AnKang University, 725000, AnKang, PR China.
| |
Collapse
|
5
|
Effects of Total Flavone from Rhododendron simsii Planch. Flower on Postischemic Cardiac Dysfunction and Cardiac Remodeling in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5389272. [PMID: 28684968 PMCID: PMC5480058 DOI: 10.1155/2017/5389272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 12/30/2022]
Abstract
This study investigated the effect of total flavone from Rhododendron simsii Planch. flower (TFR) on postischemic cardiac dysfunction and ventricular remodeling and was to test the hypothesis that TFR has an antiventricular remodeling effect through inhibition of urotensin-II receptor- (UTR-) mediated activation of RhoA-ROCK pathways. Twenty-four hours after ligation of the left anterior descending coronary artery, male Sprague-Dawley rats were randomized to receive 4-week treatment with saline (model group) or TFR. Compared to the model group, TFR treatment restored cardiac function, attenuated cardiomyocyte hypertrophy, and reduced interstitial fibrosis. Expression levels of several fibrosis-related factors, including alpha-smooth muscle actin, transforming growth factor-beta 1, matrix metalloproteinase-2, and collagen type I, were increased after MI. TFR treatment attenuated the upregulation of these factors, downregulated UTR expression, and markedly diminished the expression of RhoA and ROCK1/2. These results suggested that TFR could improve cardiac function and ameliorate ventricular remodeling through blocking UTR-mediated activation of RhoA-ROCK pathways in myocardial infarction rats.
Collapse
|
6
|
Roy AS, Dinda AK, Pandey NK, Dasgupta S. Effects of urea, metal ions and surfactants on the binding of baicalein with bovine serum albumin. J Pharm Anal 2016; 6:256-267. [PMID: 29403991 PMCID: PMC5762607 DOI: 10.1016/j.jpha.2016.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022] Open
Abstract
The interaction of baicalein with bovine serum albumin (BSA) was investigated with the help of spectroscopic and molecular docking studies. The binding affinity of baicalein towards BSA was estimated to be in order of 105 M−1 from fluorescence quenching studies. Negative ΔH° (−5.66±0.14 kJ/mol) and positive (ΔS°) (+79.96±0.65 J/mol K) indicate the presence of electrostatic interactions along with the hydrophobic forces that result in a positive ΔS°. The hydrophobic association of baicalein with BSA diminishes in the presence of sodium dodecyl sulfate (SDS) due to probable hydrophobic association of baicalein with SDS, resulting in a negative ΔS° (−40.65±0.87 J/mol K). Matrix-assisted laser desorption ionization/time of flight (MALDI--TOF) experiments indicate a 1:1 complexation between baicalein and BSA. The unfolding and refolding phenomena of BSA were investigated in the absence and presence of baicalein using steady-state and fluorescence lifetime measurements. It was observed that the presence of urea ruptured the non-covalent interaction between baicalein and BSA. The presence of metal ions (Ag+, Mg2+, Ni2+, Mn2+, Co2+and Zn2+) increased the binding affinity of ligand towards BSA. The changes in conformational aspects of BSA after ligand binding were also investigated using circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopic techniques. Site selectivity studies following molecular docking analyses indicated the binding of baicalein to site 1 (subdomain IIA) of BSA.
Collapse
Affiliation(s)
- Atanu Singha Roy
- Correspondence to: Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.Department of Chemistry, National Institute of Technology MeghalayaShillong793003India
| | | | | | | |
Collapse
|
7
|
Baicalein attenuates renal fibrosis by inhibiting inflammation via down-regulating NF-κB and MAPK signal pathways. J Mol Histol 2015; 46:283-90. [DOI: 10.1007/s10735-015-9621-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/11/2015] [Indexed: 11/27/2022]
|
8
|
Nakamura K, Yang JH, Sato E, Miura N, Wu YX. Effects of Hydroxy Groups in the A-Ring on the Anti-proteasome Activity of Flavone. Biol Pharm Bull 2015; 38:935-40. [DOI: 10.1248/bpb.b15-00018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kasumi Nakamura
- Department of Biochemistry, Hamamatsu University School of Medicine
| | - Jia-Hua Yang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine
| | - Eiji Sato
- Department of Biochemistry, Hamamatsu University School of Medicine
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine
| | - Yi-Xin Wu
- Department of Biochemistry, Hamamatsu University School of Medicine
| |
Collapse
|