1
|
Ma XN, Feng W, Chen SL, Zhong XQ, Lin CS, Xu Q. Methotrexate and the Risk of Dementia: A Two-Sample Mendelian Randomization Study. Neurol Ther 2024; 13:715-725. [PMID: 38592337 PMCID: PMC11136892 DOI: 10.1007/s40120-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Recent studies have suggested a potential association between methotrexate use and an increased risk of dementia. However, the causal relationship between methotrexate and dementia remains unclear. This study aims to investigate the potential causal effect of methotrexate use on the risk of dementia using a two-sample Mendelian randomization (TSMR) approach. METHODS We conducted a TSMR study using summary statistics from genome-wide association studies (GWAS) of methotrexate use and dementia. We obtained genetic instruments for methotrexate use from a large-scale GWAS meta-analysis and genetic instruments for dementia from a separate GWAS meta-analysis. We performed several statistical analyses, including inverse-variance weighted (IVW), weighted median (WM1), weighted mode (WM2), and MR-Egger regression methods, to estimate the causal effect of methotrexate on dementia risk. RESULTS Our TSMR analysis showed a significant positive association between genetic predisposition to methotrexate use and dementia risk. The IVW method estimated a causal odds ratio (OR) of 0.476 [95% confidence interval (CI) 0.362-0.626] per unit increase in the log odds ratio of methotrexate use. WM1, WM2, and MR-Egger methods provided consistent results. CONCLUSION The findings of this mendelian randomization (MR) study suggest a potential causal effect of methotrexate use on the risk of dementia. However, further research is needed to validate these findings and explore the underlying mechanisms. Since methotrexate is widely prescribed for various autoimmune diseases, a better understanding of its potential impact on dementia risk is crucial for optimizing treatment strategies and addressing potential adverse effects.
Collapse
Affiliation(s)
- Xiao-Na Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Feng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shu-Lin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiao-Qin Zhong
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chang-Song Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qiang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
2
|
Traserra S, Cuerda H, Vallejo A, Segarra S, Sabata R, Jimenez M. Gastroprotective Effects of Oral Glycosaminoglycans with Sodium Alginate in an Indomethacin-Induced Gastric Injury Model in Rats. Vet Sci 2023; 10:667. [PMID: 38133218 PMCID: PMC10747959 DOI: 10.3390/vetsci10120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The gastrointestinal (GI) mucosal barrier is often exposed to inflammatory and erosive insults, resulting in gastric lesions. Glycosaminoglycans (GAGs), such as hyaluronic acid (HA), chondroitin sulfate (CS), and N-acetylglucosamine (NAG) have shown potential beneficial effects as GI protectants. This study aimed to evaluate the gastroprotective effects of oral GAGs in rats with indomethacin-induced GI lesions. Forty-five Sprague-Dawley rats (8-9 weeks-old, 228 ± 7 g) were included in the study, divided into five study groups, and given, administered orally, either sucralfate (positive control group; PC), NAG (G group), sodium alginate plus HA and CS (AHC group), sodium alginate plus HA, CS, and NAG (AHCG group), or no treatment (negative control group; NC). Animals were administered 12.5 mg/kg indomethacin orally 15 min after receiving the assigned treatment. After 4 h, stomach samples were obtained and used to perform a macroscopic evaluation of gastric lesions and to allow histological assessment of the gastric wall (via H/E staining) and mucous (via PAS staining). The AHCG group showed significant gastroprotective improvements compared to the NC group, and a similar efficacy to the PC group. This combination of sodium alginate with GAGs might, therefore, become a safe and effective alternative to prescription drugs for gastric lesions, such as sucralfate, and have potential usefulness in companion animals.
Collapse
Affiliation(s)
- Sara Traserra
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
| | - Héctor Cuerda
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
| | - Adriana Vallejo
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
| | - Sergi Segarra
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain; (S.S.); (R.S.)
| | - Roger Sabata
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain; (S.S.); (R.S.)
| | - Marcel Jimenez
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
3
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
4
|
Wang L, Zhang HJ, Wang X, Zhao W, Yan W, Zhang F, Li Y, You X. Edible hydrogel from gelatin and alginate as functional low‐calorie noodle. J Appl Polym Sci 2022. [DOI: 10.1002/app.53281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lini Wang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Hui Jie Zhang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Xinyi Wang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Wenying Zhao
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Weihua Yan
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an China
| | - Fangjian Zhang
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an China
| | - Yanjun Li
- School of Food and Biological Engineering Shaanxi University of Science & Technology Xi'an China
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| |
Collapse
|
5
|
The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022; 10:microorganisms10102053. [PMID: 36296329 PMCID: PMC9608860 DOI: 10.3390/microorganisms10102053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
There are multiple concerns associated with methotrexate (MTX), widely recognized for anti-neoplastic and anti-inflammatory effects in life-threatening disease conditions, i.e., acute lymphoblastic leukemia, non-Hodgkin’s lymphoma, psoriasis, and rheumatoid arthritis, due to long-term side effects and associated toxicity, which limits its valuable potential. MTX acts as an inhibitor of dihydrofolate reductase, leading to suppression of purine and pyrimidine synthesis in high metabolic and turnover cells, targeting cancer and dysregulated immune cells. Due to low discrimination between neoplastic cells and naturally high turnover cells, MTX is prone to inhibiting the division of all fast-dividing cells, causing toxicity in multiple organs. Nutraceutical compounds are plant-based or food-derived compounds, used for their preventive and therapeutic role, ascertained in multiple organ dysfunctions, including cardiovascular disease, ischemic stroke, cancer, and neurodegenerative diseases. Gut microbiota and microbiota-derived metabolites take part in multiple physiological processes, their dysregulation being involved in disease pathogenesis. Modulation of gut microbiota by using nutraceutical compounds represents a promising therapeutic direction to restore intestinal dysfunction associated with MTX treatment. In this review, we address the main organ dysfunctions induced by MTX treatment, and modulations of them by using nutraceutical compounds. Moreover, we revealed the protective mechanisms of nutraceuticals in MTX-induced intestinal dysfunctions by modulation of gut microbiota.
Collapse
|
6
|
Niu W, Chen Y, Wang L, Li J, Cui Z, Lv J, Yang F, Huo J, Zhang Z, Ju J. The combination of sodium alginate and chlorogenic acid enhances the therapeutic effect on ulcerative colitis by the regulation of inflammation and the intestinal flora. Food Funct 2022; 13:10710-10723. [PMID: 36173280 DOI: 10.1039/d2fo01619b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorogenic acid (CA) and sodium alginate (SA) each have good therapeutic effects on ulcerative colitis (UC) owing to their antioxidant and anti-inflammatory activity. This study aimed to investigate the effects of CA alone and in combination with SA on inflammatory cells and UC mice. In the Lipopolysaccharide (LPS)-induced RAW 264.7 inflammatory cell model, Nitric oxide (NO) and interleukin-6 (IL-6) levels were significantly lower after treatment with CA plus SA than with CA alone. In the DSS-induced UC mouse model, compared with CA alone, CA plus SA showed a better ability to alleviate weight loss, reduce the disease activity index (DAI), improve the colonic mucosa, reduce the expression of inflammatory factors in the serum and myeloperoxidase (MPO) in colonic tissue, increase superoxide dismutase (SOD) levels, protect the intestinal mucosa and regulate the abundance of Actinobacteriota, Lactobacillus, Bifidobacterium, Bacteroides, Subdoligranulum and Streptococcus. Thus, CA plus SA can improve the therapeutic efficacy of CA in UC by regulating inflammatory factors, oxidative stress, and the intestinal flora and by protecting ulcerative wounds. These findings broaden our understanding of the role of the combination of SA and CA in enhancing the effects of CA on UC and provide strategies for prevention and treatment.
Collapse
Affiliation(s)
- Wei Niu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuxuan Chen
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ligui Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jia Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhao Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jiajie Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fuyan Yang
- Anhui University of Chinese Medicine, Hefei, China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China. .,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Nam SY, Lee SW, Jeon SW, Kwon YH. Effect of Sodium Alginate on Gastrointestinal Symptoms after Esophagogastroduodenoscopy with Biopsy: Randomized Controlled Trial. Gut Liver 2021; 16:37-43. [PMID: 34373362 PMCID: PMC8761922 DOI: 10.5009/gnl20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/04/2022] Open
Abstract
Background/Aims After esophagogastroduodenoscopy (EGD) with biopsy, some patients experience gastrointestinal symptoms. This study investigated the effect of sodium alginate on biopsy-related gastrointestinal symptoms. Methods In this open-label, randomized, controlled trial, patients undergoing EGD with biopsy were randomly assigned to a treatment or control group. In the treatment group, sodium alginate was orally administered for 3 days after EGD. Patients completed questionnaires about their gastrointestinal symptoms at baseline (past week), the day after returning home, and after another 3 days. Gastrointestinal symptoms, including abdominal pain, epigastric pain/soreness, heartburn, acid reflux, nausea/vomiting, borborygmus, abdominal distension, and belching, were rated using an upper gastrointestinal symptom rating scale (GSRS). Results A total of 210 persons (138 men) who underwent EGD with biopsy were enrolled and allocated to the treatment (n=104) or control (n=106) group. At baseline, the demographic factors and GSRS scores were not different between the control and treatment groups. The epigastric pain/soreness score increased in the control group after endoscopic biopsy (+0.056), whereas the score was decreased in the treatment group (-0.067) (p=0.042). In the treatment group, the scores for acid regurgitation and epigastric soreness decreased during follow-up from those at baseline (p<0.05), whereas there were no significant reductions in the control group. The scores for belching and borborygmus decreased during follow-up only in the treatment group. Abdominal bloating decreased in both the control and treatment groups. Conclusions Sodium alginate reduced epigastric pain/soreness after EGD with biopsy. Therefore, the prescription of sodium alginate should be considered after endoscopic biopsy.
Collapse
Affiliation(s)
- Su Youn Nam
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| | - Sang Won Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| | - Seong Woo Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| | - Yong Hwan Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
8
|
Rengasamy KR, Mahomoodally MF, Aumeeruddy MZ, Zengin G, Xiao J, Kim DH. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem Toxicol 2020; 135:111013. [PMID: 31794803 DOI: 10.1016/j.fct.2019.111013] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023]
Abstract
Seaweeds are among the significant currently exploited marine plant resources which are gaining full applications in culinary, cosmetic, pharmaceutical, and biotechnological processes. Much attention has been devoted to seaweeds based on their proven health benefits and is considered as a rich source of structurally different bioactive metabolites for the discovery of novel functional food-based pharmacophores/drugs. Nonetheless, there is still a dearth of updated compilation and analysis of the in-depth pharmacological activities of these compounds. This review, therefore, aims to provide a piece of up-to-date detailed information on the major compounds isolated from various seaweed species together with their in-vitro and in-vivo biological properties. These compounds were found to possess broad pharmacological properties and inhibitory enzyme activities against critical enzymes involved in the aetiology of noncommunicable diseases. However, their toxicity, clinical efficacy, mechanisms of action, and interaction with conventional foods, are still less explored and require more attention in future studies.
Collapse
Affiliation(s)
- Kannan Rr Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 05029, South Korea.
| | | | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Doo Hwan Kim
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
9
|
High-Fiber Diets in Gastrointestinal Tract Diseases. DIETARY INTERVENTIONS IN GASTROINTESTINAL DISEASES 2019. [DOI: 10.1016/b978-0-12-814468-8.00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Sangild PT, Shen RL, Pontoppidan P, Rathe M. Animal models of chemotherapy-induced mucositis: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 2018; 314:G231-G246. [PMID: 29074485 DOI: 10.1152/ajpgi.00204.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemotherapy for cancer patients induces damaging tissue reactions along the epithelium of the gastrointestinal tract (GIT). This chemotherapy-induced mucositis (CIM) is a serious side effect of cytotoxic drugs, and several animal models of CIM have been developed, mainly in rodents and piglets, to help understand the progression of CIM and how to prevent it. Animal models allow highly controlled experimental conditions, detailed organ (e.g., GIT) insights, standardized, clinically relevant treatment regimens, and discovery of new biomarkers. Still, surprisingly few results from animal models have been translated into clinical CIM management and treatments. The results obtained from specific animal models can be difficult to translate to the diverse range of CIM manifestations in patients, which vary according to the antineoplastic drugs, dose, underlying (cancer) disease, and patient characteristics (e.g., age, genetics, and body constitution). Another factor that hinders the direct use of results from animals is inadequate collaboration between basic science and clinical science in relation to CIM. Here, we briefly describe CIM pathophysiology, particularly the basic knowledge that has been obtained from CIM animal models. These model studies have indicated potential new preventive and ameliorating interventions, including supplementation with natural bioactive diets (e.g., milk fractions, colostrum, and plant extracts), nutrients (e.g., polyunsaturated fatty acids, short-chain fatty acids, and glutamine), and growth factor peptides (e.g., transforming growth factor and glucagon-like peptide-2), as well as manipulations of the gut microbiota (e.g., prebiotics, probiotics, and antibiotics). Rodent CIM models allow well-controlled, in-depth studies of animals with or without tumors while pig models more easily make clinically relevant treatment regimens possible. In synergy, animal models of CIM provide the basic physiological understanding and the new ideas for treatment that are required to make competent decisions in clinical practice.
Collapse
Affiliation(s)
- Per T Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen , Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital , Odense , Denmark
| | - René Liang Shen
- Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark
| | - Peter Pontoppidan
- Comparative Pediatrics and Nutrition, University of Copenhagen , Frederiksberg , Denmark.,Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen , Denmark
| | - Mathias Rathe
- Hans Christian Andersen Children's Hospital, Odense University Hospital , Odense , Denmark
| |
Collapse
|
11
|
Chiba K, Miyazaki T, Sekiyama Y, Miyazaki M, Okada K. The therapeutic efficacy of allyl isothiocyanate in cows with bovine digital dermatitis. J Vet Med Sci 2017; 79:1191-1195. [PMID: 28552873 PMCID: PMC5559362 DOI: 10.1292/jvms.16-0270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bovine digital dermatitis (BDD) is the most prevalent infectious cause of lameness in cattle. Because Treponema infection is a major etiology of BDD, the most common treatment of BDD is an antibiotic.
Nonetheless, dairy cows require a withdrawal period after antibiotic treatment before their milk can be marketed. To address the problem, in this study, we tested whether 3 nonantibiotic agents (used separately)—allyl
isothiocyanate (AITC), sodium alginate, and calcium hydroxide—alleviate BDD lesions in dairy cows. The AITC treatment improved the BDD lesions, whereas the sodium alginate and calcium hydroxide treatments did not. Therapeutic
efficacy of AITC was similar to that of lincomycin, a topical antibiotic prescribed for BDD. These results suggest that AITC is a promising nonantibiotic agent for BDD treatment in dairy cows.
Collapse
Affiliation(s)
- Kanako Chiba
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tamako Miyazaki
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yasushi Sekiyama
- Mitsubishi Kagaku Foods Corporation, 1-1-1 Marunouchi, Chiyoda, Tokyo 100-8251, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Keiji Okada
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
12
|
Horibe S, Tanahashi T, Kawauchi S, Mizuno S, Rikitake Y. Preventative Effects of Sodium Alginate on Indomethacin-induced Small-intestinal Injury in Mice. Int J Med Sci 2016; 13:653-63. [PMID: 27647994 PMCID: PMC5027183 DOI: 10.7150/ijms.16232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
Recent advances in diagnostic technologies have revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) can cause serious mucosal injury in the upper and lower gastrointestinal tract (including the small intestine). A drug to treat NSAID-induced small-intestinal injury (SII) is lacking. Sodium alginate is a soluble dietary fiber extracted from brown seaweed and its solution has been used as a hemostatic agent to treat gastrointestinal bleeding due to gastric ulcers. Whether sodium alginate has therapeutic effects on NSAID-induced SII and its mechanism of action are not known. Here, we investigated if administration of two forms (high-molecular-weight (HMW) and low-molecular-weight (LMW)) of sodium alginate could ameliorate indomethacin-induced SII. Pretreatment with HMW sodium alginate or LMW sodium alginate before indomethacin administration improved ulceration and the resultant intestinal shortening was associated with reduced histological severity of mucosal injury and ameliorated mRNA expression of inflammation-related molecules in the small intestine. We found that mRNAs of secretory Muc2 and membrane-associated Muc1, Muc3 and Muc4 were expressed in the small intestine. mRNA expression of Muc1-4 was increased in indomethacin-induced SII, and these increases were prevented by sodium alginate. Thus, administration of sodium alginate could be a therapeutic approach to prevent indomethacin-induced SII.
Collapse
Affiliation(s)
- Sayo Horibe
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Toshihito Tanahashi
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan;; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shoji Kawauchi
- Educational Center for Clinical Pharmacy, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Shigeto Mizuno
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan;; Endoscopy Department, Kindai University Nara Hospital, Ikoma 630-0293, Japan
| | - Yoshiyuki Rikitake
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan;; Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
13
|
Tsukuda Y, Onodera T, Ito M, Izumisawa Y, Kasahara Y, Igarashi T, Ohzawa N, Todoh M, Tadano S, Iwasaki N. Therapeutic effects of intra-articular ultra-purified low endotoxin alginate administration on an experimental canine osteoarthritis model. J Biomed Mater Res A 2015; 103:3441-8. [PMID: 25904112 DOI: 10.1002/jbm.a.35490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/12/2015] [Accepted: 04/15/2015] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to elucidate the therapeutic effects of intra-articular administration of ultra-purified low endotoxin alginate (UPLE-alginate) on osteoarthritis (OA) using a canine anterior cruciate ligament transection (ACLT) model. DESIGN We used 20 beagle dogs. ACLT was performed on the left knee of each dog and a sham operation was performed on the right knee as a control. All animals were randomly divided into the control (saline) and therapeutic (UPLE-alginate) groups. Animals in the control and therapeutic groups received weekly injections with 0.7 mL normal saline or 0.7 mL 0.5% UPLE-alginate, respectively, from 0 to 3 weeks after ACLT or sham operation. At 9 weeks after ACLT, the knee joints of all animals were observed using arthroscopy. All animals were euthanized at 14 weeks after ACLT and evaluated using morphologic assessment, histologic assessment, and biomechanical testing. RESULTS Arthroscopic findings showed intact cartilage surface in both groups. Morphologic findings in the therapeutic group showed milder degeneration compared with those of the control group, but there were no significant differences between groups. Histologic scores of the medial femoral condyle (MFC) and lateral femoral condyle (LFC) were better in the therapeutic group than the control group (MFC: p = 0.009, LFC: p = 0.009). Joint lubrication did not differ significantly between groups. CONCLUSION Intra-articular administration of UPLE-alginate in the early stage of OA slowed disease progression in canines. UPLE-alginate may have potential as a therapeutic agent for OA patients and reduce the number of patients who need to undergo total joint arthroplasty.
Collapse
Affiliation(s)
- Yukinori Tsukuda
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Masayuki Ito
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yasuharu Izumisawa
- Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yasuhiko Kasahara
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Tatsuya Igarashi
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| | - Nobuo Ohzawa
- Business Development Division, Mochida Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Masahiro Todoh
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Shigeru Tadano
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Wang K, Dong K, Yan Y, Xu W, Zhang L, Zhao G, Xing J. In vitro and in vivo study of a colon-targeting pH-sensitive hydrocortisone sodium succinate hydrogel. RSC Adv 2015. [DOI: 10.1039/c5ra06884c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to prepare and characterize a novel pH-sensitive hydrocortisone sodium succinate loaded hydrogel (HSS-GEL) for specifically delivering HSS to the colon, and evaluate its targeting properties.
Collapse
Affiliation(s)
- Ke Wang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Kai Dong
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yan Yan
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Wei Xu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Lu Zhang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Guilan Zhao
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| | - Jianfeng Xing
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|