1
|
Wilcox NC, Taheri G, Halievski K, Talbot S, Silva JR, Ghasemlou N. Interactions between skin-resident dendritic and Langerhans cells and pain-sensing neurons. J Allergy Clin Immunol 2024; 154:11-19. [PMID: 38492673 DOI: 10.1016/j.jaci.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Various immune cells in the skin contribute to its function as a first line of defense against infection and disease, and the skin's dense innervation by pain-sensing sensory neurons protects the host against injury or damage signals. Dendritic cells (DCs) are a heterogeneous population of cells that link the innate immune response to the adaptive response by capturing, processing, and presenting antigens to promote T-cell differentiation and activation. DCs are abundant across peripheral tissues, including the skin, where they are found in the dermis and epidermis. Langerhans cells (LCs) are a DC subset located only in the epidermis; both populations of cells can migrate to lymph nodes to contribute to broad immune responses. Dermal DCs and LCs are found in close apposition with sensory nerve fibers in the skin and express neurotransmitter receptors, allowing them to communicate directly with the peripheral nervous system. Thus, neuroimmune signaling between DCs and/or LCs and sensory neurons can modulate physiologic and pathophysiologic pathways, including immune cell regulation, host defense, allergic response, homeostasis, and wound repair. Here, we summarize the latest discoveries on DC- and LC-neuron interaction with neurons while providing an overview of gaps and areas not previously explored. Understanding the interactions between these 2 defence systems may provide key insight into developing therapeutic targets for treating diseases such as psoriasis, neuropathic pain, and lupus.
Collapse
Affiliation(s)
- Natalie C Wilcox
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Golnar Taheri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katherine Halievski
- Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada
| | - Sebastien Talbot
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jaqueline R Silva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Queen's University, Kingston, Ontario, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Orii A, Kurohane K, Sekiguchi K, Tsutsumi M, Imai Y. Comparison of adjuvant mechanisms of medium-chain triacylglycerol in a mouse FITC-induced contact hypersensitivity model. Toxicology 2023; 488:153482. [PMID: 36870414 DOI: 10.1016/j.tox.2023.153482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The number of allergy sufferers has been increasing with the increase in chemicals to which we are potentially exposed. We have discovered that tributyrin, a short-chain triacylglycerol (TAG), enhanced fluorescein isothiocyanate (FITC)-induced contact hypersensitivity in a mouse model. Medium-chain triacylglycerols (MCTs) are used in cosmetics, with which we come into direct contact frequently, to maintain skin conditions and as a thickening agent for cosmetics. In this study, we examined whether MCTs with different side chain lengths enhanced skin sensitization to FITC in the mouse model. During skin sensitization to FITC, the presence of tributyrin (side chain carbon number, 4; C4) as well as that of each MCT, tricaproin (C6), tricaprylin (C8), or tricaprin (C10), resulted in enhanced skin sensitization, whereas that of trilaurin (C12) did not. As to the mechanism underlying the enhanced sensitization, three MCTs (C6, C8 and C10) facilitated migration of FTIC-presenting CD11c+ dendritic cells to draining lymph nodes. These results indicated that not only tributyrin but also MCTs, up to side chain carbon number 10, have an adjuvant effect on FITC-induced skin hypersensitivity in mice.
Collapse
Affiliation(s)
- Akimasa Orii
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Kota Sekiguchi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Masato Tsutsumi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan.
| |
Collapse
|
3
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
5
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Sekiguchi K, Kurohane K, Tsutsumi M, Mochizuki N, Orii A, Nose M, Imai Y. Enhancement of mouse contact hypersensitivity appears with a short chain triacylglycerol but not with a long chain one. Toxicology 2018; 412:48-54. [PMID: 30503584 DOI: 10.1016/j.tox.2018.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
The prevalence of skin allergies could be partly due to the increased exposure to chemicals from consumer products. Chemicals that can enhance hypersensitivity caused by other chemicals are the focus of this study. We have demonstrated that phthalate esters with short chain alcohols enhance fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) in a mouse model. We have also found that tributyrin, a triacylglycerol (TAG) with three butyric acids, enhances sensitization to FITC. To elucidate such an enhanced skin sensitization might be based on a general feature of TAG, we compared tributyrin and triolein, a natural TAG, as to an adjuvant effect on FITC-CHS. Triolein is the dominant TAG in olive oil and contains long chain mono-unsaturated fatty acids. Unlike tributyrin and dibutyl phthalate (DBP), triolein did not exhibit an adjuvant effect. With triolein, enhancement of FITC-presenting CD11c+ dendritic cell trafficking to draining lymph nodes was weak, and the activation status of DC, as revealed as CD86 expression, was low. We found a difference in the pattern of skin cytokine production, i.e., that thymic stromal lymphopoietin was produced with DBP and interleukin-1β with tributyrin. Triolein did not induce either of these cytokines. This illustrates that the adjuvant effect of tributyrin on FITC-CHS is not a general phenomenon for TAGs. Although beneficial effects may be expected through oral administration of tributyrin, the effect on skin immune systems should be considered.
Collapse
Affiliation(s)
- Kota Sekiguchi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Masato Tsutsumi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Narumi Mochizuki
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Akimasa Orii
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Mutsumi Nose
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| |
Collapse
|
7
|
Matsuoka T, Endo Y, Kurohane K, Imai Y. Skin Sensitization to Fluorescein Isothiocyanate Is Enhanced by Butyl Paraben in a Mouse Model. Biol Pharm Bull 2018; 41:1853-1858. [PMID: 30282852 DOI: 10.1248/bpb.b18-00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contact hypersensitivity (CHS) to preservatives is receiving increased attention. Parabens are widely used in foods, pharmaceutics and cosmetics as preservatives. The skin sensitizing activity of parabens remains controversial but a few investigations have been made as to whether parabens could facilitate sensitization to other chemicals. We have shown that di-n-butyl phthalate (DBP), a phthalate ester, has an adjuvant effect in a fluorescein isothiocyanate (FITC)-induced CHS mouse model. We have also demonstrated that DBP activates transient receptor potential ankyrin 1 (TRPA1) cation channels expressed on sensory neurons. Comparative studies of phthalate esters revealed that TRPA1 agonistic activity and the adjuvant effect on FITC-CHS coincide. Here we focused on two commonly used parabens, butyl paraben (BP) and ethyl paraben (EP), as to their adjuvant effects. BALB/c mice were epicutneously sensitized with FITC in acetone in the presence or absence of a paraben. Sensitization to FITC was evaluated as the ear-swelling response after FITC challenge. BP but not EP enhanced skin sensitization to FITC, but the effect of BP was much weaker than that of DBP. Mechanistically, BP enhanced the trafficking of FITC-presenting CD11c+ dendritic cells (DCs) from the skin to draining lymph nodes as well as cytokine production by draining lymph nodes. When the TRPA1 agonistic activity was measured with a cell line expressing TRPA1, BP exhibited higher activity than EP. The present study provides direct in vivo evidence that BP causes sensitization to other chemicals by means of a mouse FITC-CHS model.
Collapse
Affiliation(s)
- Takeshi Matsuoka
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yukina Endo
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
8
|
Sekiguchi K, Ogawa E, Kurohane K, Konishi H, Mochizuki N, Manabe K, Imai Y. Adjuvant effect of short chain triacylglycerol tributyrin on a mouse contact hypersensitivity model. Toxicol Lett 2018; 284:56-62. [DOI: 10.1016/j.toxlet.2017.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023]
|
9
|
Matsuoka T, Kurohane K, Suzuki W, Ogawa E, Kobayashi K, Imai Y. Dibutyl Maleate and Dibutyl Fumarate Enhance Contact Sensitization to Fluorescein Isothiocyanate in Mice. Biol Pharm Bull 2016; 39:272-7. [DOI: 10.1248/bpb.b15-00683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takeshi Matsuoka
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Wakana Suzuki
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Erina Ogawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kamiyu Kobayashi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|