1
|
Formulation optimization, anesthetic activity, skin permeation, and transportation pathway of Alpinia galanga oil SNEDDS in zebrafish (Danio rerio). Eur J Pharm Biopharm 2021; 165:193-202. [PMID: 33979660 DOI: 10.1016/j.ejpb.2021.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 11/20/2022]
Abstract
Alpinia galanga oil (AGO) has an anesthetic activity but its water insoluble property limits its clinical applications. The aim of the present study was to develop a self-nanoemulsifying drug delivery system of AGO (SNEDDS-AGO) to avoid the use of organic solvent and investigate AGO transportation pathway and anesthetic activity. Three optimized formulations from a contour plots of droplet size; SNEDDS-AGO-1, SNEDDS-AGO-2, and SNEDDS-AGO-3, composed of AGO, Miglyol 812, Cremophor RH 40, Capmul MCM EP, and ethanol at the ratios of 40:10:35:10:5, 40:20:15:20:5, and 60:10:15:10:5, respectively were selected as they possessed different droplet size of 62 ± 0.5, 107 ± 2.8, and 207 ± 4.3 nm, respectively. It was found that the droplet size played an important role in fish anesthesia. SNEDDS-AGO-3 showed the longest anesthetic induction time (270 sec) (p < 0.03). Transportation pathway and skin permeation of SNEDDS-AGO-2 were investigated using nile red labelled AGO and detected by fluorescence microscope. AGO was found mostly in brain, gills, and skin suggesting that the transportation pathway of AGO in zebrafish is passing through the gills and skin to the brain. SNEDDS-AGO formulations showed significantly higher permeation through the skin than AGO ethanolic solution. In conclusion, SNEDDS is a promising delivery system of AGO.
Collapse
|
2
|
Sezgin-Bayindir Z, Losada-Barreiro S, Bravo-Díaz C, Sova M, Kristl J, Saso L. Nanotechnology-Based Drug Delivery to Improve the Therapeutic Benefits of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2021; 10:685. [PMID: 33925605 PMCID: PMC8145905 DOI: 10.3390/antiox10050685] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The disadvantages of conventional anticancer drugs, such as their low bioavailability, poor targeting efficacy, and serious side effects, have led to the discovery of new therapeutic agents and potential drug delivery systems. In particular, the introduction of nano-sized drug delivery systems (NDDSs) has opened new horizons for effective cancer treatment. These are considered potential systems that provide deep tissue penetration and specific drug targeting. On the other hand, nuclear factor erythroid 2-related factor 2 (NRF2)-based anticancer treatment approaches have attracted tremendous attention and produced encouraging results. However, the lack of effective formulation strategies is one of the factors that hinder the clinical application of NRF2 modulators. In this review, we initially focus on the critical role of NRF2 in cancer cells and NRF2-based anticancer treatment. Subsequently, we review the preparation and characterization of NDDSs encapsulating NRF2 modulators and discuss their potential for cancer therapy.
Collapse
Affiliation(s)
- Zerrin Sezgin-Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sonia Losada-Barreiro
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, 36200 Vigo, Spain;
| | - Carlos Bravo-Díaz
- Department of Physical Chemistry, Faculty of Chemistry, University of Vigo, 36200 Vigo, Spain;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
3
|
Singh G. Resveratrol: nanocarrier-based delivery systems to enhance its therapeutic potential. Nanomedicine (Lond) 2020; 15:2801-2817. [PMID: 33191840 DOI: 10.2217/nnm-2020-0289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a polyphenolic compound existing in trees, peanuts and grapes and exhibits a broad spectrum of promising therapeutic activities, but it is unclear whether this entity targets the sites of action after oral administration. In vivo applicability of resveratrol has limited success so far, mainly due to its incompetent systemic delivery resulting from its low water solubility, poor bioavailability and short biological half-life. First-pass metabolism and presence of enterohepatic recirculation create doubt on the biological application of high doses typically used for in vitro trials. To augment bioavailability, absorption and uptake of resveratrol by cellular internalization, countless approaches have been implemented which involve the use of nanocarriers. Nanocarriers are a well-known delivery system used to reduce first-pass hepatic metabolism, overcome enterohepatic recirculation and accelerate the absorption of drugs via lymphatic pathways.
Collapse
|
4
|
Adu‐Frimpong M, Omari‐Siaw E, Mukhtar YM, Xu X, Yu J. Formulation of Pomegranate Seed Oil: A Promising Approach of Improving Stability and Health‐Promoting Properties. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Michael Adu‐Frimpong
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| | - Emmanuel Omari‐Siaw
- Dr. E. Omari‐SiawDepartment of Pharmaceutical SciencesKumasi Technical UniversityKumasiGhana
| | - Yusif Mohammed Mukhtar
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| | - Ximing Xu
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| | - Jiangnan Yu
- Department of Pharmaceutics and Tissue EngineeringJiangsu University301 Xuefu Road, 212001ZhenjiangChina
| |
Collapse
|
5
|
AboulFotouh K, Allam AA, El-Badry M, El-Sayed AM. Self-emulsifying drug–delivery systems modulate P-glycoprotein activity: role of excipients and formulation aspects. Nanomedicine (Lond) 2018; 13:1813-1834. [DOI: 10.2217/nnm-2017-0354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Self-emulsifying drug–delivery systems (SEDDS) have been widely employed to ameliorate the oral bioavailability of P-glycoprotein (P-gp) substrate drugs and to overcome multidrug resistance in cancer cells. However, the role of formulation aspects in the reduced P-gp activity is not fully understood. In this review, we first explore the role of various SEDDS excipients in the reduced P-gp activity with the main emphasis on the effective excipient concentration range for excipient-mediated modulation of P-gp activity and then we discuss the synergistic effect of various formulation aspects on the excipient-mediated modulation of P-gp activity. This review provides an approach to develop a rationally designed SEDDS to overcome P-gp-mediated drug efflux.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ayat A Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed M El-Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
6
|
Possible use of Punica granatum (Pomegranate) in cancer therapy. Pharmacol Res 2018; 133:53-64. [DOI: 10.1016/j.phrs.2018.04.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/13/2023]
|
7
|
Karimi M, Sadeghi R, Kokini J. Pomegranate as a promising opportunity in medicine and nanotechnology. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Marchiori MCL, Rigon C, Copetti PM, Sagrillo MR, Cruz L. Nanoencapsulation Improves Scavenging Capacity and Decreases Cytotoxicity of Silibinin and Pomegranate Oil Association. AAPS PharmSciTech 2017; 18:3236-3246. [PMID: 28577126 DOI: 10.1208/s12249-017-0810-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/11/2017] [Indexed: 01/27/2023] Open
Abstract
Silibinin (SB) and pomegranate oil (PO) present therapeutic potential due to antioxidant activity, but the biological performance of both bioactives is limited by their low aqueous solubility. To overcome this issue, the aim of the present investigation was to develop nanocapsule suspensions with PO as oil core for SB encapsulation, as well as assess their toxicity in vitro and radical scavenging activity. The nanocapsule suspensions were prepared by interfacial deposition of preformed polymer method. SB-loaded PO-based nanocapsules (SBNC) showed an average diameter of 157 ± 3 nm, homogenous size distribution, zeta potential of -14.1 ± 1.7 mV, pH of 5.6 ± 0.4 and SB content close to 100%. Similar results were obtained for the unloaded formulation (PONC). The nanocapsules controlled SB release at least 10 times as compared with free SB in methanolic solution. The SBNC scavenging capacity in vitro was statistically higher than free SB (p < 0.05). Cell viability in monocytes and lymphocytes was kept around 100% in the treatments with SBNC and PONC, while the SB and the PO caused a decrease around 30% at 50 μM (SB) and 724 μg/mL (PO). Protein carbonyls and DNA damage were minimized by SB and PO nanoencapsulation. Lipid peroxidation occurred in nanocapsule treatments regardless of the SB presence, which may be attributed to PO acting as substrate in reaction. The free compounds also caused lipid peroxidation. The results show that SBNC and PONC presented adequate physicochemical characteristics and low toxicity against human blood cells. Thereby, this novel nanocarrier may be a promising formulation for therapeutic applications.
Collapse
|
9
|
Yen CC, Chang CW, Hsu MC, Wu YT. Self-Nanoemulsifying Drug Delivery System for Resveratrol: Enhanced Oral Bioavailability and Reduced Physical Fatigue in Rats. Int J Mol Sci 2017; 18:E1853. [PMID: 28841149 PMCID: PMC5618502 DOI: 10.3390/ijms18091853] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Resveratrol (RES), a natural polyphenolic compound, exerts anti-fatigue activity, but its administration is complicated by its low water solubility. To improve RES bioavailability, this study developed a self-nanoemulsifying drug delivery system (SNEDDS) for RES and evaluated its anti-fatigue activity and rat exercise performance by measuring fatigue-related parameters, namely lactate, ammonia, plasma creatinine phosphokinase, and glucose levels and the swimming time to exhaustion. Through solubility and emulsification testing, the optimized SNEDDS composed of Capryol 90, Cremophor EL, and Tween 20 was developed; the average particle size in this formulation, which had favorable self-emulsification ability, was approximately 41.3 ± 4.1 nm. Pharmacokinetic studies revealed that the oral bioavailability of the optimized RES-SNEDDS increased by 3.2-fold compared with that of the unformulated RES-solution. Pretreatment using the RES-SNEDDS before exercise accelerated the recovery of lactate after exercise; compared with the vehicle group, the plasma ammonia level in the RES-SNEDDS group significantly decreased by 65.4%, whereas the glucose level significantly increased by approximately 1.8-fold. Moreover, the swimming time to exhaustion increased by 2.1- and 1.8-fold, respectively, compared with the vehicle and RES-solution pretreatment groups. Therefore, the developed RES-SNEDDS not only enhances the oral bioavailability of RES but may also exert anti-fatigue pharmacological effect.
Collapse
Affiliation(s)
- Ching-Chi Yen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
| | - Chih-Wei Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
- Department of Medical Research, College of Medicine, Kaohsiung Medical University Hospital, 100, Tzyou 1st Rd., Kaohsiung 80708, Taiwan.
| | - Yu-Tse Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung 80708, Taiwan.
- Department of Medical Research, College of Medicine, Kaohsiung Medical University Hospital, 100, Tzyou 1st Rd., Kaohsiung 80708, Taiwan.
| |
Collapse
|
10
|
|
11
|
Mota Ferreira L, Gehrcke M, Ferrari Cervi V, Eliete Rodrigues Bitencourt P, Ferreira da Silveira E, Hofstatter Azambuja J, Prates Ramos A, Nascimento K, Beatriz Moretto M, Braganhol E, Rorato Sagrillo M, Cruz L. Pomegranate seed oil nanoemulsions with selective antiglioma activity: optimization and evaluation of cytotoxicity, genotoxicity and oxidative effects on mononuclear cells. PHARMACEUTICAL BIOLOGY 2016; 54:2968-2977. [PMID: 27357525 DOI: 10.1080/13880209.2016.1199039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/27/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Glioma is a malignant brain tumor with rapid proliferation, infiltrative growth, poor prognosis and it is chemoresistent. Pomegranate seed oil (PSO) has antioxidant, anti-inflammatory and antitumor properties. This study showed the optimization of PSO nanoemulsions (NEs) as an alternative for glioma treatment. OBJECTIVE The study aimed to evaluate PSO NEs cytotoxicity on human blood cells and antiglioma effects against C6 cells. MATERIALS AND METHODS NEs were prepared by the spontaneous emulsification method, using PSO at 1.5 and 3.0%, and were evaluated regarding their physical stability and antioxidant activity. Toxicity evaluations in human blood cells were performed in terms of cell viability, genotoxicity, lipid peroxidation, protein carbonylation, catalase activity and hemolysis at 0.1, 0.25 and 0.5 mg/mL PSO, after a 72-h incubation period. In vitro antitumor effect was determined against glioma cells after 24 and 48 h, and astrocytes were used as a non-transformed cell model. RESULTS Formulations presented droplet size below 250 nm, low polydispersity index, negative zeta potential and pH in the acid range. NEs and PSO had scavenging capacity around 30% and promoted a proliferative effect in mononuclear cells, increasing about 50% cell viability. No genotoxic and oxidative damage was observed in lipid peroxidation, protein carbonylation and catalase activity evaluations for NEs. Hemolysis study showed a hemolytic effect at high concentrations. Moreover, formulations reduced only tumor cell viability to 47%, approximately. DISCUSSION AND CONCLUSION Formulations are adequate and safe for intravenous administration. Besides, in vitro antitumor activity indicates that NEs are promising for glioma treatment.
Collapse
Affiliation(s)
- Luana Mota Ferreira
- a Programa de Pós-graduação em Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Mailine Gehrcke
- a Programa de Pós-graduação em Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Verônica Ferrari Cervi
- a Programa de Pós-graduação em Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Paula Eliete Rodrigues Bitencourt
- a Programa de Pós-graduação em Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Elita Ferreira da Silveira
- b Programa de Pós-Graduação em Bioquímica e Bioprospecção , Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Pelotas , Brazil
| | - Juliana Hofstatter Azambuja
- b Programa de Pós-Graduação em Bioquímica e Bioprospecção , Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Pelotas , Brazil
| | - Andiara Prates Ramos
- c Curso de Biomedicina , Centro Universitário Franciscano , Santa Maria , Brazil
| | - Kátia Nascimento
- c Curso de Biomedicina , Centro Universitário Franciscano , Santa Maria , Brazil
| | - Maria Beatriz Moretto
- a Programa de Pós-graduação em Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria , Brazil
| | - Elizandra Braganhol
- b Programa de Pós-Graduação em Bioquímica e Bioprospecção , Centro de Ciências Químicas, Farmacêuticas e de Alimentos , Pelotas , Brazil
| | | | - Letícia Cruz
- a Programa de Pós-graduação em Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Maria , Santa Maria , Brazil
| |
Collapse
|
12
|
Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine 2016; 11:1987-2007. [PMID: 27274231 PMCID: PMC4869672 DOI: 10.2147/ijn.s104701] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Nanotechnology Research Center, Chungju, Republic of Korea; Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|