1
|
Gentili V, Turrin G, Marchetti P, Rizzo S, Schiuma G, Beltrami S, Cristofori V, Illuminati D, Compagnin G, Trapella C, Rizzo R, Bortolotti D, Fantinati A. Synthesis and biological evaluation of novel rhodanine-based structures with antiviral activity towards HHV-6 virus. Bioorg Chem 2021; 119:105518. [PMID: 34861628 DOI: 10.1016/j.bioorg.2021.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
An increased awareness of diseases associated with Human herpesvirus 6 (HHV-6) infection or reactivation has resulted in a growing interest in the evaluation of the best treatment options available for the clinical management of HHV-6 disease. However, no compound has yet been approved exclusively for HHV-6 infection treatment. For this reason, the identification of anti-HHV6 compounds provides a valuable opportunity for developing efficient antiviral therapies. A possible target for antiviral drugs is the virus-cell fusion step. In this study, we synthetized potential fusion intermediates inhibitors based on the rhodanine structure. The obtained derivatives were tested for cytotoxicity and for antiviral activity in human cells infected with HHV6. Level of infection was monitored by viral DNA quantification at different time points up to 7 days post infection. Among the synthetized derivatives, 9e showed a significative inhibitory effect on viral replication that lasted over 7 days, probably attributable to the particular combination of hydrophilic and hydrophobic substituents to the rhodanine moiety. Our results support the use of these amphipathic fusion inhibitors for the treatment of HHV-6 infections.
Collapse
Affiliation(s)
- Valentina Gentili
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Giulia Turrin
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Paolo Marchetti
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Silvia Beltrami
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Virginia Cristofori
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Davide Illuminati
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Greta Compagnin
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Claudio Trapella
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy.
| | - Roberta Rizzo
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy.
| | - Daria Bortolotti
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Anna Fantinati
- University of Ferrara, Department of Chemical, Pharmaceutical and Agricultural Sciences, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Zhang F, Liu Y, You Q, Yang E, Liu B, Wang H, Xu S, Nawaz W, Chen D, Wu Z. NSC23766 and Ehop016 Suppress Herpes Simplex Virus-1 Replication by Inhibiting Rac1 Activity. Biol Pharm Bull 2021; 44:1263-1271. [PMID: 34162786 DOI: 10.1248/bpb.b21-00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus-1 (HSV-1) infection of the eyes leads to herpes simplex virus keratitis (HSK), the main cause of infectious blindness in the world. As the current therapeutics for HSV-1 infection are rather limited and prolonged use of acyclovir (ACV)/ganciclovir (GCV) and in immunocompromised patients lead to the rise of drug resistant mutants, it underlines the urgent need for new antiviral agents with distinct mechanisms. Our study attempted to establish ras-related C3 botulinum toxin substrate 1 (Rac1) as a new therapeutic target for HSV-1 infection by using Rac1-specific inhibitors to evaluate the in vitro inhibition of virus growth. Our results showed that increased Rac1 activity facilitated HSV-1 replication and inhibition of Rac1 activity by NSC23766 and Ehop016 significantly reduced HSV-1 replication. Thus, we identified NSC23766 and Ehop016 as possessing potent anti-HSV-1 activities by suppressing the Rac1 activity, suggesting that Rac1 is a potential target for treating HSV-1-related diseases.
Collapse
Affiliation(s)
- Fang Zhang
- Center for Public Health Research, Medical School of Nanjing University.,Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University
| | - Ye Liu
- Center for Public Health Research, Medical School of Nanjing University.,Department of Ophthalmology, JinLing Hospital, Medical School of Nanjing University
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University
| | - Enhui Yang
- Nanjing Children's Hospital, Nanjing Medical University
| | - Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University
| | - Huanru Wang
- Center for Public Health Research, Medical School of Nanjing University
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University
| | - Waqas Nawaz
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University.,School of Life Sciences, Ningxia University
| |
Collapse
|
3
|
Fabiani M, Limongi D, Palamara AT, De Chiara G, Marcocci ME. A Novel Method to Titrate Herpes Simplex Virus-1 (HSV-1) Using Laser-Based Scanning of Near-Infrared Fluorophores Conjugated Antibodies. Front Microbiol 2017; 8:1085. [PMID: 28659899 PMCID: PMC5469900 DOI: 10.3389/fmicb.2017.01085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Among several strategies used for Herpes simplex virus (HSV) detection in biological specimens, standard plaque assay (SPA) remains the most reliable method to evaluate virus infectivity and quantify viral replication. However, it is a manual procedure, thereby affected by operator subjectivity, and it may be particularly laborious for multiple sample analysis. Here we describe an innovative method to perform the titration of HSV type 1 (HSV-1) in different samples, using the “In-Cell WesternTM” Assay (ICW) from LI-COR, a quantitative immunofluorescence assay that exploits laser-based scanning of near infrared (NIR). In particular, we employed NIR-immunodetection of viral proteins to monitor foci of HSV-1 infection in cell monolayers, and exploited an automated detection of their fluorescence intensity to evaluate virus titre. This innovative method produced similar and superimposable values compared to SPA, but it is faster and can be performed in 96 well plate, thus allowing to easily and quickly analyze and quantify many samples in parallel. These features make our method particularly suitable for the screening and characterization of antiviral compounds, as we demonstrated by testing acyclovir (ACV), the main anti-HSV-1 drug. Moreover, we developed a new data analysis system that allowed to overcome potential bias due to unspecific florescence signals, thus improving data reproducibility. Overall, our method may represents a useful tool for both clinical and research purposes.
Collapse
Affiliation(s)
- Marco Fabiani
- Department of Public Health and Infectious Diseases, Sapienza University of RomeRome, Italy
| | - Dolores Limongi
- San Raffaele Pisana, Istituto di Ricovero e Cura a Carattere Scientifico, Telematic UniversityRome, Italy
| | - Anna Teresa Palamara
- San Raffaele Pisana, Istituto di Ricovero e Cura a Carattere Scientifico, Telematic UniversityRome, Italy.,Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci BolognettiRome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research CouncilRome, Italy
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of RomeRome, Italy
| |
Collapse
|