1
|
Okami K, Fumoto S, Yamashita M, Nakashima M, Miyamoto H, Kawakami S, Nishida K. One-Step Formation Method of Plasmid DNA-Loaded, Extracellular Vesicles-Mimicking Lipid Nanoparticles Based on Nucleic Acids Dilution-Induced Assembly. Cells 2024; 13:1183. [PMID: 39056764 PMCID: PMC11274598 DOI: 10.3390/cells13141183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
We propose a nucleic acids dilution-induced assembly (NADIA) method for the preparation of lipid nanoparticles. In the conventional method, water-soluble polymers such as nucleic acids and proteins are mixed in the aqueous phase. In contrast, the NADIA method, in which self-assembly is triggered upon dilution, requires dispersion in an alcohol phase without precipitation. We then investigated several alcohols and discovered that propylene glycol combined with sodium chloride enabled the dispersion of plasmid DNA and protamine sulfate in the alcohol phase. The streamlined characteristics of the NADIA method enable the preparation of extracellular vesicles-mimicking lipid nanoparticles (ELNPs). Among the mixing methods using a micropipette, a syringe pump, and a microfluidic device, the lattermost was the best for decreasing batch-to-batch differences in size, polydispersity index, and transfection efficiency in HepG2 cells. Although ELNPs possessed negative ζ-potentials and did not have surface antigens, their transfection efficiency was comparable to that of cationic lipoplexes. We observed that lipid raft-mediated endocytosis and macropinocytosis contributed to the transfection of ELNPs. Our strategy may overcome the hurdles linked to supply and quality owing to the low abundance and heterogeneity in cell-based extracellular vesicles production, making it a reliable and scalable method for the pharmaceutical manufacture of such complex formulations.
Collapse
Affiliation(s)
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (K.O.); (H.M.); (S.K.); (K.N.)
| | | | | | | | | | | |
Collapse
|
2
|
Yuan R, Liu M, Cheng Y, Yan F, Zhu X, Zhou S, Dong M. Biomimetic Nanoparticle-Mediated Target Delivery of Hypoxia-Responsive Plasmid of Angiotensin-Converting Enzyme 2 to Reverse Hypoxic Pulmonary Hypertension. ACS NANO 2023; 17:8204-8222. [PMID: 37071566 DOI: 10.1021/acsnano.2c12190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by pulmonary vascular sustained constriction and progressive remodeling, which are initiated by hypoxia then with hypoxia-induced additive factors including pulmonary vascular endothelium injury, intrapulmonary angiotension system imbalance, and inflammation. Now HPH is still an intractable disease lacking effective treatments. Gene therapy has a massive potential for HPH but is hindered by a lack of efficient targeted delivery and hypoxia-responsive regulation systems for transgenes. Herein, we constructed the hypoxia-responsive plasmid of angiotensin-converting enzyme 2 (ACE2) with endothelial-specific promoter Tie2 and a hypoxia response element and next prepared its biomimetic nanoparticle delivery system, named ACE2-CS-PRT@PM, by encapsulating the plasmid of ACE2 with protamine and chondroitin sulfate as the core then coated it with a platelet membrane as a shell for targeting the injured pulmonary vascular endothelium. ACE2-CS-PRT@PM has a 194.3 nm diameter with a platelet membrane-coating core-shell structure and a negatively charged surface, and it exhibits higher delivery efficiency targeting to pulmonary vascular endothelium and hypoxia-responsive overexpression of ACE2 in endothelial cells in a hypoxia environment. In vitro, ACE2-CS-PRT@PM significantly inhibited the hypoxia-induced proliferation of pulmonary smooth muscle cells. In vivo, ACE2-CS-PRT@PM potently ameliorated the hemodynamic dysfunction and morphological abnormality and largely reversed HPH via inhibiting the hypoxic proliferation of pulmonary artery smooth muscle cells, reducing pulmonary vascular remodeling, restoring balance to the intrapulmonary angiotension system, and improving the inflammatory microenvironment without any detectable toxicity. Therefore, ACE2-CS-PRT@PM is promising for the targeted gene therapy of HPH.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province 611137, P.R. China
| | - Xiaoquan Zhu
- Medical Research Department, Air Force Medical Center, Haidian District, Beijing 100142, P.R. China
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Mingqing Dong
- Geriatric Diseases Institute of Chengdu, Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province 611137, P.R. China
| |
Collapse
|
3
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
4
|
Kurosaki T, Kanda H, Hashizume J, Sato K, Harasawa H, Nakamura T, Sasaki H, Kodama Y. Delivery of pDNA to the Lung by Lipopolyplexes Using N-Lauroylsarcosine and Effect on the Pulmonary Fibrosis. Pharmaceutics 2021; 13:pharmaceutics13111983. [PMID: 34834398 PMCID: PMC8625672 DOI: 10.3390/pharmaceutics13111983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
In a previous study, we constructed a lung-targeting lipopolyplex containing polyethyleneimine (PEI), 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA), and N-lauroylsarcosine (LS). The lipopolyplex exhibited an extremely high gene expression in the lung after intravenous administration. Here, we optimized the lipopolyplex and used it to deliver a TGF-β1 shRNA to treat refractory pulmonary fibrosis. We constructed several lipopolyplexes with pDNA, various cationic polymers, cationic lipids, and LS to select the most effective formulation. Then, the pDNA encoding shRNA against mouse TGF-β1 was encapsulated in the lipopolyplex and injected into mice with bleomycin-induced pulmonary fibrosis. After optimizing the lipopolyplex, dendrigraft poly-L-lysine (DGL) and DOTMA were selected as the appropriate cationic polymer and lipid, respectively. The lipopolyplex was constructed with a pDNA, DGL, DOTMA, and LS charge ratio of 1:2:2:4 showed the highest gene expression. After intravenous administration of the lipopolyplex, the highest gene expression was observed in the lung. In the in vitro experiment, the lipopolyplex delivered pDNA into the cells via endocytosis. As a result, the lipopolyplex containing pDNA encoding TGF-β1 shRNA significantly decreased hydroxyproline in the pulmonary fibrosis model mice. We have successfully inhibited pulmonary fibrosis using a novel lung-targeting lipopolyplex.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (T.K.); (J.H.); (K.S.); (H.H.); (T.N.)
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
| | - Hiroki Kanda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (T.K.); (J.H.); (K.S.); (H.H.); (T.N.)
| | - Kayoko Sato
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (T.K.); (J.H.); (K.S.); (H.H.); (T.N.)
| | - Hitomi Harasawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (T.K.); (J.H.); (K.S.); (H.H.); (T.N.)
| | - Tadahiro Nakamura
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (T.K.); (J.H.); (K.S.); (H.H.); (T.N.)
| | - Hitoshi Sasaki
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; (T.K.); (J.H.); (K.S.); (H.H.); (T.N.)
- Correspondence: ; Tel.: +81-95-819-7246
| |
Collapse
|
5
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021; 60:13225-13243. [PMID: 32893932 PMCID: PMC8247987 DOI: 10.1002/anie.202010282] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, genetically engineered DNA has been tested as novel vaccination strategy against various diseases, including human immunodeficiency virus (HIV), hepatitis B, several parasites, and cancers. However, the clinical breakthrough of the technique is confined by the low transfection efficacy and immunogenicity of the employed vaccines. Therefore, carrier materials were designed to prevent the rapid degradation and systemic clearance of DNA in the body. In this context, biopolymers are a particularly promising DNA vaccine carrier platform due to their beneficial biochemical and physical characteristics, including biocompatibility, stability, and low toxicity. This article reviews the applications, fabrication, and modification of biopolymers as carrier medium for genetic vaccines.
Collapse
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Luise Fanslau
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Puneet Tyagi
- Dosage Form Design and DevelopmentBioPharmaceuticals DevelopmentR&DAstra ZenecaGaithersburgMD20878USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
6
|
Kodama Y, Tokunaga A, Hashizume J, Nakagawa H, Harasawa H, Kurosaki T, Nakamura T, Nishida K, Nakashima M, Hashida M, Kawakami S, Sasaki H. Evaluation of transgene expression characteristics and DNA vaccination against melanoma metastasis of an intravenously injected ternary complex with biodegradable dendrigraft poly-L-lysine in mice. Drug Deliv 2021; 28:542-549. [PMID: 33685317 PMCID: PMC7946064 DOI: 10.1080/10717544.2021.1895904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We developed a biocompatible splenic vector for a DNA vaccine against melanoma. The splenic vector is a ternary complex composed of plasmid DNA (pDNA), biodegradable dendrigraft poly-L-lysine (DGL), and γ-polyglutamic acid (γ-PGA), the selective uptake of which by the spleen has already been demonstrated. The ternary complex containing pDNA encoding luciferase (pCMV-Luc) exhibited stronger luciferase activity for RAW264.7 mouse macrophage-like cells than naked pCMV-Luc. Although the ternary complex exhibited strong luciferase activity in the spleen after its tail vein injection, luciferase activity in the liver and spleen was significantly decreased by a pretreatment with clodronate liposomes, which depleted macrophages in the liver and spleen. These results indicate that the ternary complex is mainly transfected in macrophages and is a suitable formulation for DNA vaccination. We applied the ternary complex to a pUb-M melanoma DNA vaccine. The ternary complex containing pUb-M suppressed the growth of melanoma and lung metastasis by B16-F10 mouse melanoma cells. We also examined the acute and liver toxicities of the pUb-M ternary complex at an excess pDNA dose in mice. All mice survived the injection of the excess amount of the ternary complex. Liver toxicity was negligible in mice injected with the excess amount of the ternary complex. In conclusion, we herein confirmed that the ternary complex was mainly transfected into macrophages in the spleen after its tail vein injection. We also showed the prevention of melanoma metastasis by the DNA vaccine and the safety of the ternary complex.
Collapse
Affiliation(s)
- Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Ayako Tokunaga
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroo Nakagawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Hitomi Harasawa
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tomoaki Kurosaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Tadahiro Nakamura
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuru Hashida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
7
|
Kimura S, Khalil IA, Elewa YHA, Harashima H. Novel lipid combination for delivery of plasmid DNA to immune cells in the spleen. J Control Release 2021; 330:753-764. [PMID: 33422500 DOI: 10.1016/j.jconrel.2021.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/22/2022]
Abstract
This study reports on the development of a novel lipid combination that permits the efficient and highly selective delivery of plasmid DNA (pDNA) to immune cells in the spleen. Using DODAP, an ionizable lipid that was previously thought to be inefficient for gene delivery, we show for the first time, that this ignored lipid can be successfully used for efficient and targeted gene delivery in vivo, but only when combined with DOPE, a specific helper lipid. Using certain DODAP and DOPE ratios resulted in the formation of lipid nanoparticles (LNPs) with a ~ 1000-fold higher gene expression, and this expression was specific for the spleen, making it the most spleen-selective system for transfection using pDNA. The developed DODAP/DOPE-LNPs target immune cells in the spleen via receptors for complement C3 and this pathway is critical for efficient gene expression. We hypothesize that the high spleen transfection activity of DODAP/DOPE-LNPs is caused by the promotion of gene expression associated with B cell activation via complement receptors. LNPs encapsulating tumor-antigen encoding pDNA showed both prophylactic and therapeutic anti-tumor effects. The optimized LNPs resulted in the production of different cytokines and antigen-specific antibodies as well as exerting antigen-specific cytotoxic effects. This study revives the use of DODAP in gene delivery and highlights the importance of using appropriate lipid combinations for delivering genes to specific cells.
Collapse
Affiliation(s)
- Seigo Kimura
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt; Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan; Laboratory for Molecular Design of Pharmaceuticsx, Department of Biomedical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
8
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer‐based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Luise Fanslau
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Puneet Tyagi
- Dosage Form Design and Development BioPharmaceuticals Development R&D Astra Zeneca Gaithersburg MD 20878 USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
9
|
Yang J, Shen M, Wen H, Luo Y, Huang R, Rong L, Xie J. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr Polym 2019; 230:115650. [PMID: 31887904 DOI: 10.1016/j.carbpol.2019.115650] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) is a naturally derived bioactive macromolecule and the major component of extracellular matrix (ECM), which widely distributed in various organisms and has attracted much attention due to their significant bioactivities. It is regarded as a favorable biomaterial that has been applied extensively in field of drug delivery and tissue engineering due to its property of non-poisonous, biodegradation, biocompatible and as a major component of ECM. The present article reviews the structure and bioactivities of CS, from the preparation to structure analysis, and emphatically focuses on the biomaterial exertion in delivery system and tissue engineering. At the same time, the present application status and prospect of CS are analyzed and the biomaterial exertion of CS in delivery system and various tissue engineering are also comparatively discussed in view of biomaterial development.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Rong Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Zhao Z, Yao W, Wang N, Liu C, Zhou H, Chen H, Qiao W. Synthesis and evaluation of mono- and multi-hydroxyl low toxicity pH-sensitive cationic lipids for drug delivery. Eur J Pharm Sci 2019; 133:69-78. [PMID: 30914360 DOI: 10.1016/j.ejps.2019.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/18/2022]
Abstract
Cationic lipids can easily assemble into spherical liposomes in aqueous phase which showed unique superiority in drug and gene delivery. However, the toxicity of cationic lipids is still an obstacle to application. To develop low toxicity cationic lipids, we designed two cationic lipids contained different number of hydroxyl groups. Biocompatible mono-hydroxyl and multi-hydroxyl galactose head group was respectively modified to a biodegradable quaternary amine lipid, and two novel hydroxyl cationic lipids were synthesized and characterized by MS, 1H NMR and 13C NMR. Two lipids showed good surface activity and both of them can assemble to about 80 nm stable small unilamellar vesicles (SUVs) with cholesterol in aqueous phase. Both of lipids showed relatively lower toxicity than the well-known cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). In vitro 24 h IC50 of two assemblies were more than 50 μg/mL, which were about 10 μg/mL higher than the IC50 of DOTAP. Multi-hydroxyl galactose lipids group showed much lower toxicity than mono-hydroxyl lipids group. Moreover, Both of the assemblies with lower hemolysis were nearly non-hemolytic risk under the concentration of 30 μg/mL. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) showed that the average sizes of both doxorubicin (DOX) loaded liposomes were about 110 nm. The DOX entrapment efficiencies of galactose liposome and mono-hydroxyl liposome were 58% and 91%, respectively. Both of the DOX loaded liposomes were stable after one month placed at room temperature. Two DOX loaded liposomes showed better anti-cancer effect than free DOX above 5 μg/mL, and they can be internalized into cells and produce more release of DOX inside MCF-7 cells and HepG2 cells at pH 5.0. These results suggested that synthesized lipids are suitable as potential low toxicity cationic drug delivery systems.
Collapse
Affiliation(s)
- Zheng Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|