1
|
Matsuki Y, Iwamoto M, Maki T, Takashima M, Yoshida T, Oiki S. Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology. ACS NANO 2024; 18:30561-30573. [PMID: 39437160 PMCID: PMC11544928 DOI: 10.1021/acsnano.4c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The biological membrane is not just a platform for information processing but also a field of mechanics. The lipid bilayer that constitutes the membrane is an elastic body, generating stress upon deformation, while the membrane protein embedded therein deforms the bilayer through structural changes. Among membrane-protein interplays, various channel species act as tension-current converters for signal transduction, serving as elementary processes in mechanobiology. However, in situ studies in chaotically complex cell membranes are challenging, and characterizing the tension dependency of mechanosensitive channels remains semiquantitative owing to technical limitations. Here, we developed a programmable membrane tension-control apparatus on a lipid bilayer system. This synthetic membrane system [contact bubble bilayer (CBB)] uses pressure to drive bilayer tension changes via the Young-Laplace principle, whereas absolute bilayer tension is monitored in real-time through image analysis of the bubble geometry via the Young principle. Consequently, the mechanical nature of the system permits the implementation of closed-loop feedback control of bilayer tension (tension-clamp CBB), maintaining a constant tension for minutes and allowing stepwise tension changes within a hundred milliseconds in the tension range of 0.8 to 15 mN·m-1. We verified the system performance by examining the single-channel behavior of tension-dependent KcsA and TREK-1 potassium channels under scheduled tension time courses prescribed via visual interfaces. The result revealed steady-state activity and dynamic responses to the step tension changes, which are essential to the biophysical characterization of the channels. The apparatus explores a frontier for quantitative mechanobiology studies and promotes the development of a tension-operating experimental robot.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masayuki Iwamoto
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Takahisa Maki
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masako Takashima
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshiyuki Yoshida
- Department
of Information Science, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
2
|
Matsuki Y, Takashima M, Ueki M, Iwamoto M, Oiki S. Probing membrane deformation energy by KcsA potassium channel gating under varied membrane thickness and tension. FEBS Lett 2024; 598:1955-1966. [PMID: 38880762 DOI: 10.1002/1873-3468.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
This study investigated how membrane thickness and tension modify the gating of KcsA potassium channels when simultaneously varied. The KcsA channel undergoes global conformational changes upon gating: expansion of the cross-sectional area and longitudinal shortening upon opening. Thus, membranes impose differential effects on the open and closed conformations, such as hydrophobic mismatches. Here, the single-channel open probability was recorded in the contact bubble bilayer, by which variable thickness membranes under a defined tension were applied. A fully open channel in thin membranes turned to sporadic openings in thick membranes, where the channel responded moderately to tension increase. Quantitative gating analysis prompted the hypothesis that tension augmented the membrane deformation energy when hydrophobic mismatch was enhanced in thick membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
| | - Masako Takashima
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Misuzu Ueki
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Masayuki Iwamoto
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Japan
| |
Collapse
|
3
|
Matsuki Y, Iwamoto M, Oiki S. Asymmetric Lipid Bilayers and Potassium Channels Embedded Therein in the Contact Bubble Bilayer. Methods Mol Biol 2024; 2796:1-21. [PMID: 38856892 DOI: 10.1007/978-1-0716-3818-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cell membranes are highly intricate systems comprising numerous lipid species and membrane proteins, where channel proteins, lipid molecules, and lipid bilayers, as continuous elastic fabric, collectively engage in multi-modal interplays. Owing to the complexity of the native cell membrane, studying the elementary processes of channel-membrane interactions necessitates a bottom-up approach starting from forming simplified synthetic membranes. This is the rationale for establishing an in vitro membrane reconstitution system consisting of a lipid bilayer with a defined lipid composition and a channel molecule. Recent technological advancements have facilitated the development of asymmetric membranes, and the contact bubble bilayer (CBB) method allows single-channel current recordings under arbitrary lipid compositions in asymmetric bilayers. Here, we present an experimental protocol for the formation of asymmetric membranes using the CBB method. The KcsA potassium channel is a prototypical model channel with huge structural and functional information and thus serves as a reporter of membrane actions on the embedded channels. We demonstrate specific interactions of anionic lipids in the inner leaflet. Considering that the local lipid composition varies steadily in cell membranes, we `present a novel lipid perfusion technique that allows rapidly changing the lipid composition while monitoring the single-channel behavior. Finally, we demonstrate a leaflet perfusion method for modifying the composition of individual leaflets. These techniques with custom synthetic membranes allow for variable experiments, providing crucial insights into channel-membrane interplay in cell membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
4
|
Iwamoto M, Morito M, Oiki S, Nishitani Y, Yamamoto D, Matsumori N. Cardiolipin binding enhances KcsA channel gating via both its specific and dianion-monoanion interchangeable sites. iScience 2023; 26:108471. [PMID: 38077151 PMCID: PMC10709135 DOI: 10.1016/j.isci.2023.108471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024] Open
Abstract
KcsA is a potassium channel with a plethora of structural and functional information, but its activity in the KcsA-producing actinomycete membranes remains elusive. To determine lipid species involved in channel-modulation, a surface plasmon resonance (SPR)-based methodology, characterized by immobilization of membrane proteins under a membrane environment, was applied. Dianionic cardiolipin (CL) showed extremely higher affinity for KcsA than monoanionic lipids. The SPR experiments further demonstrated that CL bound not only to the N-terminal M0 helix, a lipid-sensor domain, but to the M0 helix-deleted mutant. In contrast, monoanionic lipids interacted primarily with the M0 helix. This indicates the presence of an alternative CL-binding site, plausibly in the transmembrane domain. Single-channel recordings demonstrated that CL enhanced channel opening in an M0-independent manner. Taken together, the action of monoanionic lipids is exclusively mediated by the M0 helix, while CL binds both the M0 helix and its specific site, further enhancing the channel activity.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Morito
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395 Japan
| | - Shigetoshi Oiki
- Biomedial Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Yudai Nishitani
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Daisuke Yamamoto
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395 Japan
| |
Collapse
|
5
|
Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells 2022; 11:cells11060921. [PMID: 35326372 PMCID: PMC8946281 DOI: 10.3390/cells11060921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023] Open
Abstract
A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.
Collapse
|
6
|
Yano K, Iwamoto M, Koshiji T, Oiki S. Geometrical and electrophysiological data of the moving membrane method for the osmotic water permeability of a lipid bilayer. Data Brief 2021; 38:107309. [PMID: 34485640 PMCID: PMC8405959 DOI: 10.1016/j.dib.2021.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Data of the osmotic water permeability of a lipid bilayer (diphytanoylphosphaticylcholin) in the presence of cholesterol (30 mole%) are shown under the simultaneous measurement of bilayer tension. Detailed methods and procedures for evaluating the water permeability using the moving membrane method (K. Yano, M. Iwamoto, T. Koshiji & S. Oiki: Visualizing the Osmotic Water Permeability of a Lipid Bilayer under Measured Bilayer Tension Using a Moving Membrane Method. Journal of Membrane Science, 627 (2021) 119231) are presented. The planar lipid bilayer is formed in a glass capillary, separating two aqueous compartments with different osmolarities, and osmotically-driven water flux is visualized as membrane movements along the capillary. The water permeability was evaluated under constant membrane area and tension after correcting for the unstirred layer effect. In these measurements, geometrical features, such as the edge of the planar lipid bilayer and the contact angle between bilayer and monolayer, were image-analyzed. The unstirred layer was evaluated electrophysiologically, in which gramicidin A channel was employed. In the presence of an osmotic gradient, the gramicidin channel generates the streaming potential, and the measured streaming potential data and the derived water-ion coupling ratio (water flux/ion flux) are shown. Detailed descriptions of the integrated method of the moving membrane allow researchers to reproduce the experiment and give opportunities to examine water permeability of various types of membranes, including those containing aquaporins. The present data of osmotic water permeability are compared with the previously published data, while they neglected the bilayer tension.
Collapse
Affiliation(s)
- Keita Yano
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takaaki Koshiji
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
7
|
Conductance selectivity of Na + across the K + channel via Na + trapped in a tortuous trajectory. Proc Natl Acad Sci U S A 2021; 118:2017168118. [PMID: 33741736 DOI: 10.1073/pnas.2017168118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ion selectivity of the potassium channel is crucial for regulating electrical activity in living cells; however, the mechanism underlying the potassium channel selectivity that favors large K+ over small Na+ remains unclear. Generally, Na+ is not completely excluded from permeation through potassium channels. Herein, the distinct nature of Na+ conduction through the prototypical KcsA potassium channel was examined. Single-channel current recordings revealed that, at a high Na+ concentration (200 mM), the channel was blocked by Na+, and this blocking was relieved at high membrane potentials, suggesting the passage of Na+ across the channel. At a 2,000 mM Na+ concentration, single-channel Na+ conductance was measured as one-eightieth of the K+ conductance, indicating that the selectivity filter allows substantial conduit of Na+ Molecular dynamics simulations revealed unprecedented atomic trajectories of Na+ permeation. In the selectivity filter having a series of carbonyl oxygen rings, a smaller Na+ was distributed off-center in eight carbonyl oxygen-coordinated sites as well as on-center in four carbonyl oxygen-coordinated sites. This amphipathic nature of Na+ coordination yielded a continuous but tortuous path along the filter. Trapping of Na+ in many deep free energy wells in the filter caused slow elution. Conversely, K+ is conducted via a straight path, and as the number of occupied K+ ions increased to three, the concerted conduction was accelerated dramatically, generating the conductance selectivity ratio of up to 80. The selectivity filter allows accommodation of different ion species, but the ion coordination and interactions between ions render contrast conduction rates, constituting the potassium channel conductance selectivity.
Collapse
|
8
|
Visualizing the osmotic water permeability of a lipid bilayer under measured bilayer tension using a moving membrane method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Iwamoto M, Oiki S. Hysteresis of a Tension-Sensitive K + Channel Revealed by Time-Lapse Tension Measurements. JACS AU 2021; 1:467-474. [PMID: 34467309 PMCID: PMC8395652 DOI: 10.1021/jacsau.0c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 05/05/2023]
Abstract
Various types of channels vary their function by membrane tension changes upon cellular activities, and lipid bilayer methods allow elucidation of direct interaction between channels and the lipid bilayer. However, the dynamic responsiveness of the channel to the membrane tension remains elusive. Here, we established a time-lapse tension measurement system. A bilayer is formed by docking two monolayer-lined water bubbles, and tension is evaluated via measuring intrabubble pressure as low as <100 Pa (Young-Laplace principle). The prototypical KcsA potassium channel is tension-sensitive, and single-channel current recordings showed that the activation gate exhibited distinct tension sensitivity upon stretching and relaxing. The mechanism underlying the hysteresis is discussed in the mode shift regime, in which the channel protein bears short "memory" in their conformational changes.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department
of Molecular Neuroscience, University of
Fukui Faculty of Medical Science, 910-1193 Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, 910-1193 Fukui, Japan
| |
Collapse
|
10
|
Iwamoto M, Oiki S. Physical and Chemical Interplay Between the Membrane and a Prototypical Potassium Channel Reconstituted on a Lipid Bilayer Platform. Front Mol Neurosci 2021; 14:634121. [PMID: 33716666 PMCID: PMC7952623 DOI: 10.3389/fnmol.2021.634121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Once membrane potential changes or ligand binding activates the ion channel, the activity of the channel is finely modulated by the fluctuating membrane environment, involving local lipid composition and membrane tension. In the age of post-structural biology, the factors in the membrane that affect the ion channel function and how they affect it are a central concern among ion channel researchers. This review presents our strategies for elucidating the molecular mechanism of membrane effects on ion channel activity. The membrane’s diverse and intricate effects consist of chemical and physical processes. These elements can be quantified separately using lipid bilayer methods, in which a membrane is reconstructed only from the components of interest. In our advanced lipid bilayer platform (contact bubble bilayer, CBB), physical features of the membrane, such as tension, are freely controlled. We have elucidated how the specific lipid or membrane tension modulates the gating of a prototypical potassium channel, KcsA, embedded in the lipid bilayer. Our results reveal the molecular mechanism of the channel for sensing and responding to the membrane environment.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
11
|
Abstract
A functional characterization of channel proteins has been performed using planar lipid bilayers as the following procedure. For bacterial channels, such as the KcsA potassium channel, channel proteins were synthesized in Escherichia coli, followed by solubilization, purification, and incorporation into liposomes. Similarly, channel proteins were synthesized using an in vitro transcription/translation kit in the presence of liposomes. Then, these liposome-incorporated channels were served for electrophysiological recordings after liposome fusion into a preformed planar lipid bilayer. Here, we established a straightforward method for concurrent channel synthesis and functional measurement using a water-in-oil bubble bilayer system. Channel proteins were synthesized in vitro within a water-in-oil bubble, having a lipid bilayer at the contact with another bubble (in bulla synthesis). The channels were spontaneously incorporated into the lipid bilayer under application of the membrane potential, and we successfully detected nascent channel activities. This way our experiment has mimicked bacterial synthetic membrane in the presence of a resting membrane potential. Technical details for establishing the in bulla expression system are described.
Collapse
|
12
|
Urakubo K, Iwamoto M, Oiki S. Drop-in-well chamber for droplet interface bilayer with built-in electrodes. Methods Enzymol 2019; 621:347-363. [PMID: 31128788 DOI: 10.1016/bs.mie.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various methods have been developed for the formation of planar lipid bilayers, and recent techniques using water-in-oil droplets, such as droplet interface bilayer (DIB) and contact bubble bilayer (CBB) methods, allow the ready formation of bilayers with arbitrary lipid compositions. Here, we developed a simple and portable DIB system using drop-in-wells, shaping two merging wells for settling electrolyte droplets. An aliquot of the electrolyte solution (1μL) is dropped into an organic solvent, and the droplet sinks to the drop-in-well at the bottom, where two monolayer-lined droplets come in contact to form the bilayer. Pre-installed electrodes allow electrophysiological measurements. The detailed drop-in-well method is presented, and some variations of the method, such as the use of microelectrodes and a sheet with a small hole for low-noise recordings, are extended. Examples of single channel current recordings of the KcsA potassium channel are demonstrated.
Collapse
Affiliation(s)
- Kazuhiro Urakubo
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan.
| |
Collapse
|
13
|
Constitutive boost of a K + channel via inherent bilayer tension and a unique tension-dependent modality. Proc Natl Acad Sci U S A 2018; 115:13117-13122. [PMID: 30509986 DOI: 10.1073/pnas.1812282115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular mechanisms underlying channel-membrane interplay have been extensively studied. Cholesterol, as a major component of the cell membrane, participates either in specific binding to channels or via modification of membrane physical features. Here, we examined the action of various sterols (cholesterol, epicholesterol, etc.) on a prototypical potassium channel (KcsA). Single-channel current recordings of the KcsA channel were performed in a water-in-oil droplet bilayer (contact bubble bilayer) with a mixed phospholipid composition (azolectin). Upon membrane perfusion of sterols, the activated gate at acidic pH closed immediately, irrespective of the sterol species. During perfusion, we found that the contacting bubbles changed their shapes, indicating alterations in membrane physical features. Absolute bilayer tension was measured according to the principle of surface chemistry, and inherent bilayer tension was ∼5 mN/m. All tested sterols decreased the tension, and the nonspecific sterol action to the channel was likely mediated by the bilayer tension. Purely mechanical manipulation that reduced bilayer tension also closed the gate, whereas the resting channel at neutral pH never activated upon increased tension. Thus, rather than conventional stretch activation, the channel, once ready to activate by acidic pH, changes the open probability through the action of bilayer tension. This constitutes a channel regulating modality by two successive stimuli. In the contact bubble bilayer, inherent bilayer tension was high, and the channel remained boosted. In the cell membrane, resting tension is low, and it is anticipated that the ready-to-activate channel remains closed until bilayer tension reaches a few millinewton/meter during physiological and pathological cellular activities.
Collapse
|
14
|
Iwamoto M, Elfaramawy MA, Yamatake M, Matsuura T, Oiki S. Concurrent In Vitro Synthesis and Functional Detection of Nascent Activity of the KcsA Channel under a Membrane Potential. ACS Synth Biol 2018; 7:1004-1011. [PMID: 29566487 DOI: 10.1021/acssynbio.7b00454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Processes involved in the functional formation of prokaryotic membrane proteins have remained elusive. Here, we developed a new in vitro membrane protein expression system to detect nascent activities of the KcsA potassium channel in lipid bilayers under an applied membrane potential. The channel was synthesized using a reconstituted Escherichia coli-based in vitro transcription/translation system (IVTT) in a water-in-oil droplet lined by a membrane. The synthesized channels spontaneously incorporated into the membrane even without the translocon machinery (unassisted pathway) and formed functional channels with the correct orientation. The single-channel current of the first appearing nascent channel was captured, followed by the subsequent appearance of multiple channels. Notably, the first appearance time shortened substantially as the membrane potential was hyperpolarized. Under a steadily applied membrane potential, this system serves as a production line of membrane proteins via the unassisted pathway, mimicking the bacterial synthetic membrane.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| | - Maie A. Elfaramawy
- Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Yamatake
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| |
Collapse
|