1
|
Zhang M, Cheng J, Luo J, Li C, Hou T, Zhao Y, Wang Y, Qu H, Kong H. Protective effects of Scutellariae Radix Carbonisata-derived carbon dots on blood-heat and hemorrhage rats. Front Pharmacol 2023; 14:1118550. [PMID: 37637430 PMCID: PMC10450154 DOI: 10.3389/fphar.2023.1118550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
As the charcoal processing product of Scutellariae Radix (SR), SR Carbonisata (SRC) has been clinically used as a cooling blood and hemostatic agent for thousands of years. However, the underlying active ingredients and mechanism of SRC still remained unspecified. In this study, SRC derived carbon dots (SRC-CDs) were extracted and purified from the aqueous solution of SRC, followed by physicochemical property assessment by series of technologies. The cooling blood and hemostatic effects of SRC-CDs were further evaluated via a blood-heat and hemorrhage (BHH) rat model. Results showed that the diameters of obtained fluorescent SRC-CDs ranged from 5.0 nm to 10.0 nm and possessed functional group-rich surfaces. Additionally, the as-prepared SRC-CDs showed remarkable cooling blood and hemostasis effects in BHH model, mainly manifested by significant improvement of elevated rectal temperature, inflammatory cytokines (TNF-α, IL-6, and IL-1β) levels, as well as protein expressions of myD88 and NF-κB p65, abnormal coagulation parameters (elevated APTT and FIB), hemogram parameters (RBC, HGB, and HCT), and histopathological changes in lung and gastric tissues. This study, for the first time, demonstrated that SRC-CDs were the cooling blood and hemostatic active components of SRC, which could inhibit the release of inflammatory cytokines by regulating myD88/NF-κB signaling pathway, and activating the fibrin system and endogenous coagulation pathway. These results not only provide a new perspective for the study of active ingredients of carbonized herbs represented by SRC, but also lay an experimental foundation for the development of next-generation nanomedicines.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jinjun Cheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Changxiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Jie X, Feng Y, Jiahao F, Ganggui L, Jiani Y, Zhongyu X, Yuan Y, Tinggang Z, Xiaodan Z, Zongsuo L. Comprehensive chemical profiling of two Dendrobium species and identification of anti-hepatoma active constituents from Dendrobium chrysotoxum by network pharmacology. BMC Complement Med Ther 2023; 23:217. [PMID: 37393306 DOI: 10.1186/s12906-023-04048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Dendrobium nobile and Dendrobium chrysotoxum are important species of the genus Dendrobium and have great economic and medicinal value. However, the medicinal properties of these two plants remain poorly understood. This study aimed to investigate the medical properties of D. nobile and D. chrysotoxum by conducting a comprehensive chemical profiling of the two plants. Additionally, active compounds and predictive targets for anti-hepatoma activity in D. chrysotoxum extracts were identified using Network Pharmacology. RESULTS Chemical profiling showed that altogether 65 phytochemicals were identified from D. nobile and D. chrysotoxum, with major classes as alkaloids, terpenoids, flavonoids, bibenzyls and phenanthrenes. About 18 compounds were identified as the important differential metabolites in D. nobile and D. chrysotoxum. Furtherly, CCK-8 results showed that the extracts of stems and leaves of D. nobile and D. chrysotoxum could inhibit the growth of Huh-7 cells, and the anti-hepatoma activity of extracts were dose-dependent. Among the extracts, the extract of D. chrysotoxum showed significant anti-hepatoma activity. In order to find the potential mechanism of anti-hepatoma activity of D. chrysotoxum, five key compounds and nine key targets were obtained through constructing and analyzing the compound-target-pathway network. The five key compounds were chrysotobibenzyl, chrysotoxin, moscatilin, gigantol and chrysotoxene. Nine key targets, including GAPDH, EGFR, ESR1, HRAS, SRC, CCND1, HIF1A, ERBB2 and MTOR, could be considered as the core targets of the anti-hepatoma activity of D. chrysotoxum. CONCLUSIONS In this study, the chemical composition difference and anti-hepatoma activity of stems and leaves of D. nobile and D. chrysotoxum were compared, and the potential anti-hepatoma mechanism of D. chrysotoxum was revealed in a multi-target and multi-pathway manner.
Collapse
Affiliation(s)
- Xia Jie
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yin Feng
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd, Shaoxing, China
| | - Fang Jiahao
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lou Ganggui
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yu Jiani
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu Zhongyu
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Yuan
- State Key Lab Breeding Base Dao-Di Herbs, National Resource Center Chinese Materia Medica, Beijing, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Zhang Xiaodan
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Liang Zongsuo
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd, Shaoxing, China
| |
Collapse
|
3
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Li J, Zhang Y, Liu S, Li W, Sun Y, Cao H, Wang S, Meng J. A network pharmacology integrated pharmacokinetics strategy to investigate the pharmacological mechanism of absorbed components from crude and processed Zingiberis Rhizoma on deficiency-cold and hemorrhagic syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115754. [PMID: 36195301 DOI: 10.1016/j.jep.2022.115754] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zingiberis Rhizoma (ZR) and Zingiberis Rhizoma Carbonisata (ZRC), as two forms of ginger-based herbal drugs used in China for at least 2000 years, have been recorded in Chinese Pharmacopoeia and applied for specific indications in traditional Chinese medicine (TCM). AIM OF THE STUDY The present study aimed to explore the underlying therapeutic and processing mechanism of the absorbed components of ZR and ZRC on deficiency-cold and hemorrhagic syndrome (DCHS) using network pharmacological technique combined with pharmacokinetics strategy. MATERIALS AND METHODS In this study, a rapid and sensitive approach was conceived to simultaneously determine the seven components (zingiberone, 6-gingerol, 8-gingerol, 6-shogaol, 6-paradol, diacetyl-6-gingerol and 10-gingerol) in rat serum by HPLC-DAD-MS. The network pharmacological technique was employed to evaluate the effect of the absorbed components of ZR and ZRC on DCHS. Also, the vitro experiments were carried out to validate the functions of the seven compounds on coagulation and other major haematological effects. RESULTS The values of intra-assay and inter-assay precision were determined to be less than 7.44%, with an accuracy value ranging from 83.64% to 107.99%. Analysis of rat plasma revealed that the extraction recoveries and matrix effects of the seven analytes were >85.76%. The method for validation following oral administration of ZR and ZRC to rats was proved to be a success in the pharmacokinetic study of the seven ingredients. Pharmacokinetics showed that ZR processing could enhance the absorption and utilization of 6-shogaol, 6-paradol and diacetyl-6-gingerol, meanwhile reduce the absorption of 6-gingerol, 8-gingerol, and 10-gingerol. Through the pathway enrichment analysis, it was found that the significant biological process of ZR and ZRC on DCHS was primarily associated with complement, coagulation cascades and platelet activation pathways. The vitro experiments indicated that zingiberone, 6-paradol and diacetyl-6-gingerol had a hemostatic effect by upregulating the expression of one or more targets such as TNF-α, FⅩa, FⅫ, FⅧ, ICAM-1, vWF and ITGB3. While 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol played a critical role in promoting blood circulation by increasing the expression of TM and/or PORC, and/or reducing the expression of ITGB3. CONCLUSION In brief, network pharmacological technique in combination with pharmacokinetics strategy provided an applicable method for pharmacological mechanism study of ZR and ZRC, which, also, could be used as reference for quality control of the two drugs. In a broader sense, this combined strategy might even be valuable in uncovering the therapeutic and processing mechanism of Chinese herbs on a systematic level.
Collapse
Affiliation(s)
- Jiasheng Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Ying Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Shurui Liu
- Anhui College of Traditional Chinese Medicine, Wuhu, Anhui, China
| | - Wangjun Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Yue Sun
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China
| | - Hui Cao
- College of Pharmacy, Jinan University, Guangzhou, China.
| | - Shumei Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| | - Jiang Meng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica, State Administration of Traditional Chinese Medicine (TCM), Engineering Technology Research Center for Chinese Materia Medica Quality of Universities in Guangdong Province, Guangzhou, China.
| |
Collapse
|
5
|
Wang C, Tan L, Liu J, Fu D, Wang C, Li P, Li Z, Liu J. Integrated Metabolomics and Network Pharmacology to Decipher the Latent Mechanisms of Protopanaxatriol against Acetic Acid-Induced Gastric Ulcer. Int J Mol Sci 2022; 23:ijms232012097. [PMID: 36292949 PMCID: PMC9602736 DOI: 10.3390/ijms232012097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric ulcer (GU) is a peptic disease with high morbidity and mortality rates affecting approximately 4% of the population throughout the world. Current therapies for GU are limited by the high relapse incidence and side effects. Therefore, novel effective antiulcer drugs are urgently needed. Ginsenosides have shown good anti-GU effects, and the major intestinal bacterial metabolite of ginsenosides, protopanaxatriol (PPT), is believed to be the active component. In this study, we evaluated the anti-GU effect of PPT in rats in an acetic acid-induced GU model. High (H-PPT) and medium (M-PPT) doses of PPT (20.0 and 10.0 mg/mg/day) significantly reduced the ulcer area and the ET-1, IL-6, EGF, SOD, MDA and TNF-α levels in serum were regulated by PPT in a dose-dependent manner. We also investigated the mechanisms of anti-GU activity of PPT based on metabolomics coupled with network pharmacology strategy. The result was that 16 biomarkers, 3 targets and 3 metabolomic pathways were identified as playing a vital role in the treatment of GU with PPT and were further validated by molecular docking. In this study, we have demonstrated that the integrated analysis of metabolomics and network pharmacology is an effective strategy for deciphering the complicated mechanisms of natural compounds.
Collapse
Affiliation(s)
- Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dongxing Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (J.L.); Tel.: +86-0431-8561-9803 (J.L.)
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (J.L.); Tel.: +86-0431-8561-9803 (J.L.)
| |
Collapse
|
6
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
7
|
Tao X, Zhang X, Feng F. <i>Astragalus </i>polysaccharide suppresses cell proliferation and invasion by up-regulation of miR-195-5p in non-small cell lung cancer. Biol Pharm Bull 2022; 45:553-560. [DOI: 10.1248/bpb.b21-00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xingkui Tao
- School of Biological and Food Engineering, Suzhou University
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University
| | - Fan Feng
- School of Biological and Food Engineering, Suzhou University
| |
Collapse
|
8
|
Zhu Y, Zhong W, Peng J, Wu H, Du S. Study on the Mechanism of Baimai Ointment in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking with Experimental Verification. Front Genet 2021; 12:750681. [PMID: 34868222 PMCID: PMC8635803 DOI: 10.3389/fgene.2021.750681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose: The external preparation of the Tibetan medicine formula, Baimai ointment (BMO), has great therapeutic effects on osteoarthritis (OA). However, its molecular mechanism remains almost elusive. Here, a comprehensive strategy combining network pharmacology and molecular docking with pharmacological experiments was adopted to reveal the molecular mechanism of BMO against OA. Methods: The traditional Chinese medicine for systems pharmacology (TCMSP) database and analysis platform, traditional Chinese medicine integrated database (TCMID), GeneCards database, and DisGeNET database were used to screen the active components and targets of BMO in treating OA. A component-target (C-T) network was built with the help of Cytoscape, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment through STRING. Autodock Tools which was used to dock the key components and key target proteins was analyzed. Animal experiments were performed to verify the key targets of BMO. Hematoxylin-eosin and toluidine blue staining were used to observe the pathology of joints. Protein expression was determined using enzyme-linked immunosorbent assay. Results: Bioactive compounds and targets of BMO and OA were screened. The network analysis revealed that 17-β-estradiol, curcumin, licochalone A, quercetin, and glycyrrhizic acid were the candidate key components, and IL6, tumor necrosis factor (TNF), MAPK1, VEGFA, CXCL8, and IL1B were the candidate key targets in treating OA. The KEGG indicated that the TNF signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway were the potential pathways. Molecular docking implied a strong combination between key components and key targets. The pathology and animal experiments showed BMO had great effects on OA via regulating IL6, TNF, MAPK1, VEGFA, CXCL8, and IL1B targets. These findings were consistent with the results obtained from the network pharmacology approach. Conclusion: This study preliminarily illustrated the candidate key components, key targets, and potential pathways of BMO against OA. It also provided a promising method to study the Tibetan medicine formula or external preparations.
Collapse
Affiliation(s)
- Yingyin Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wanling Zhong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Yang G, Zhang C, Li P, Qiu Y, Dong F. Chemical Fingerprinting and Quantitative Analysis of Cortex Moutan From Different Tree Peony Cultivars Using HPLC-ESI/MS. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20973519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To evaluate the relationship between tree peony cultivars and the quality consistency of Cortex Moutan, a sensitive, reliable, and validated method based on high-performance liquid chromatography-electrospray ionization/mass spectrometry was developed for the quantitative analysis of paeonol and chemical fingerprinting of Cortex Moutan. Results from quantitative analysis showed that the content of paeonol in Paeonia ostii “Feng Dan” was the highest (24.51 ± 0.83 mg/g), followed by Paeonia suffruticosa “Luoyang Hong” (14.29 ± 0.76 mg/g), P. suffruticosa “Taiping Hong” (13.99±1.13 mg/g), and P. suffruticosa “Zhaofen” (13.08±0.85 mg/g). Paeonia ostii “Luoyang Feng Dan” was found to have the lowest content (8.76±0.46 mg/g) of paeonol. In qualitative analysis, 5 tree peony cultivars collected from different plantations in China were used to establish the fingerprint. For the fingerprint analysis, 17 characteristic peaks were used to evaluate similarities among tree peony cultivars, and they were found to show similarities. In short, the results of quantitative and qualitative analyses suggested that there was no significant difference in the chemical composition of Cortex Moutan from different tree peony varieties; however, there were significant differences in the levels of chemical components. The method developed in this study provides an important reference to establish a quality control method for other related traditional Chinese medicinal preparations.
Collapse
Affiliation(s)
- Guodong Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Chunhui Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry & Economy, Zhengzhou, Henan, People’s Republic of China
| | - Peng Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Yan Qiu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| | - Faming Dong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People’s Republic of China
| |
Collapse
|
10
|
Qi Y, Lu H, Zhao Y, Wang Z, Ji Y, Jin N, Ma Z. Screening and Analysis of Hypolipidemic Components from Shuangdan Capsule Based on Pancreatic Lipase. Curr Bioinform 2020. [DOI: 10.2174/1574893615666200106113910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Some natural pancreatic lipase inhibitors with fewer side effects are proposed.
As a traditional Chinese medicine, Shuangdan Capsule (SDC) has been used for the treatment
of higher lipid in blood, which is mainly composed by Radix Salviae and Peony skin.
Objective:
This work is aimed to investigate the molecular mechanism of the constituents from this
SDC against metabolic disorders, the molecular flexibility and intermolecular interactional characteristics
of these components in the active sites.
Methods:
The small molecules were obtained from the Traditional Chinese Medicine Database
TCM database, the systems-level pharmacological database for Traditional Chinese Medicine
TCMSP server was used to calculate the ADME-related properties. Autodock Vina was used to
perform virtual screening of the selected molecules and to return energy values in several ligand
conformations. The network parameters were calculated using the network analyzer plug-in in Cytoscape.
Results:
The most active six molecules are all enclosed by amino acids ASP79, TYR114,
GLU175, PRO180, PHE215, GLY216 and LUE264, among which, hydrophobic interaction, hydrogen
bond and repulsive forces play extremely important roles. It is worth noting that most of
the local minima of molecular electrostatic potentials on van der Waals (vdW) surface are increased
while the maxima negative ones are decreased simultaneously, implying that the electrostatic
potential tends to be stable. From the topological analysis of the Protein-Protein Interaction
(PPI) network, PNLIP related genes are also proved to be pivotal targets for hyperlipidemia, such
as LPL, AGK, MGLL, LIPE, LIPF and PNPLA2. Further GO analysis indicated that lipophilic
terpenoid compounds may reduce the blood lipid by taking part in the lipid catabolic process, the
extracellular space and the cellular components of the extracellular region part and the triacylglycerol
lipase activity.
Conclusion:
This study provides some useful information for the development and application of
natural hypolipidemic medcines. Further pharmacologically active studies are still needed both in
vivo and in vitro.
Collapse
Affiliation(s)
- Y.J. Qi
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - H.N. Lu
- Department of Life Sciences and Biological Engineering, Northwest Minzu University, Lanzhou, China
| | - Y.M. Zhao
- Department of Chemical Engineering, Northwest Minzu University, Lanzhou, China
| | - Z. Wang
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai, China
| | - Y.J. Ji
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - N.Z. Jin
- Gansu Province Computing Center, Lanzhou, China
| | - Z.R. Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
11
|
Nam HH, Kim JS, Lee J, Seo YH, Kim HS, Ryu SM, Choi G, Moon BC, Lee AY. Pharmacological Effects of Agastache rugosa against Gastritis Using a Network Pharmacology Approach. Biomolecules 2020; 10:biom10091298. [PMID: 32916904 PMCID: PMC7565599 DOI: 10.3390/biom10091298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Agastache rugosa is used as a Korean traditional medicine to treat gastric diseases. However, the active ingredients and pharmacological targets of A. rugosa are unknown. In this study, we aimed to reveal the pharmacological effects of A. rugosa on gastritis by combining a mice model and a network pharmacology method. The macrophage and gastritis-induced models were used to evaluate the pharmacological effects of A. rugosa. The results show that A. rugosa relieved mucosal damage induced by HCl/EtOH in vivo. Network analysis identified 99 components in A. rugosa; six components were selected through systematic screening, and five components were linked to 45 gastritis-related genes. The main components were acacetin and luteolin, and the identified core genes were AKT serine/threonine kinase 1 (AKT1), nuclear factor kappa B inhibitor alpha (NFKBIA), and mitogen-activated protein kinase-3 (MAPK3) etc. in this network. The network of components, target genes, protein–protein interactions, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was closely connected with chemokines and with phosphoinositide 3-kinase-Akt (PI3K/AKT), tumor-necrosis-factor alpha (TNFα), mitogen-activated protein kinase, nuclear factor kappa B, and Toll-like receptor (TLR) pathways. In conclusion, A. rugosa exerts gastro-protective effects through a multi-compound and multi-pathway regulatory network and holds potential for treating inflammatory gastric diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - A Yeong Lee
- Correspondence: ; Tel.: +82-61-338-7128; Fax: +82-61-338-7136
| |
Collapse
|
12
|
Exploring Pharmacological Mechanisms of Xiang Ju Tablets in the Treatment of Allergic Rhinitis via a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6272073. [PMID: 31611923 PMCID: PMC6757243 DOI: 10.1155/2019/6272073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
In this study, allergic rhinitis (AR) disease targets and Xiang Ju tablet-associated targets were determined through the use of databases for the identification of putative therapeutic targets and then combined. After the production of a putative therapeutic target interaction network for Xiang Ju tablets against AR, topological analysis was used to determine the core targets of Xiang Ju tablets in AR treatment. For all putative therapeutic targets, analyses of biological function and pathway enrichment were performed to optimize the biological processes and key signaling pathways of Xiang Ju tablets in AR treatment. The top 5 therapeutic targets of Xiang Ju tablets in AR treatment were identified and included CXCL8, IL1B, IL6, IL10, and TNF. The biological processes, molecular functions, and cell composition related to the use of Xiang Ju tablets in AR treatment were predominantly associated with cytokine production, regulation of protein secretion, and regulation of peptide secretion; cytokine activity, cytokine receptor binding, and receptor ligand activity; and platelet alpha granule lumen, collagen-containing extracellular matrix, and platelet alpha granule. In addition, the top 64 key signaling pathways were identified.
Collapse
|
13
|
Hua-Ying W, Chen Z, Zhao-Hua W, Shi-Ying Z, Jing L, Feng L, Hui-Yong H, Liang L. Network Pharmacology-based Analysis on the Molecular Biological Mechanisms of Xin Hui Tong Formula in Coronary Heart Disease Treatment. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|